AD=AL08 527 SOFTECH INC WALTHAM MA ¢ 8/9
THE JOVIAL (J73) WORKBOOK. VOLUME I. INTEOER AND PLOATIN. POINT-!TC(U)
NOV 81 FSOSOZ-TH-M‘NO
UNCLASSIFIED =TR=81=333=VOL=1

e

0 & =

—— " ¥
— fi22

e

it ©* =

s

D22 s e

MICROCOPY RESOLUTION TEST CHARY
NATIONAL BOREAL ©F STANDARDS (96 <-4

PHOTOGRAPH THIS SHEET

b E |
L%l ‘g EVEL — SoCtech , JIwe. RY
S B The JOVIAL (U7 Workbook Wels I-V
-y g DOCUMENT IDENTIFICATION Noyv. 81
< [Conboct F30ca2-79-c -cotto Ratse Ribe- -8!«#33
= | DIETRIBUYION STATEMENT & \(t'(s:/ ;gﬂ'

Apmoved for public release)
Distribution Unlimited

DISTRIBUTION STATEMENT
ACCESSION FOR
NTIS GRAAI E
™ e O DTIC
UNANNOUNCED O E
JUSTIFICATION LECTE
DEC 14 1981
BY D
DISTRIBUTION /
AVAILABILITY CODES
DisT AVAIL AND/OR SPECIAL DATE ACCESSIONED

H

DISTRIBUTION STAMP

DATE RECEIVED IN DTIC
PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2

DTIC gg::ng 70A DOCUMENT PROCESSING SHEET

RADC-TR-81-333, Vols I-V](of 15)
Interim Report -
November 1981

THE JOVIAL (J73) WORKBOOK

SofTech, Inc.

ADA108527

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

This material may be reproduced by and
for the Ug. Government pursuant to the
copyright #license under DAR Clause
7-104.9(a) (1977 APR).

P A R O S [B

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

Griffiss Air Force Base, New York 13441

8112 08 12)

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nationms.

RADC-TR-81-333, Vols I-Vl (of 15) have been reviewed and are approved for
publication.

DOUGLAS A. WHITE
Project Engineer

APPROVED:

JOHN J. MARCINIAK, Colonel, USAF
Chief, Command and Control Division

FOR THE COMMANDER: %_ﬂ y. 4

JOHN P. HUSS
Acting Chief, Tlans Offisp

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organizationm,
please notify RADC.(COES) Griffiss AFB NY 13441. This will assist us in
maintaining a current mailing list. '

Do not return copies of this report unless contractual obligations or notices -

on a specific document requires that it be returned.

S e Ty ' i o =

& aiee e o 2 s et e L

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

REPORT DOCUMENTATION PAGE -t LT
[T REPGRT NUMBER 2. GOVT ACCESSION NO| 3. RECIPIENT'S CATALOG NUMBER
RADC-TR-81-333, Vols I-VI (of 15)
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
Interim Report
THE JOVIAL (J73) WORKBOOK Dec 79 - Oct 81
6. PERFORMING OG. REPORT NUMBER
N/A
7. AUTHOR(s) 3. CONTRACT OR GRANT NUMBER(s) |

N/A
F30602-79-C-0040

0. PROGRAM ELEMENT. PROJECT, TASK
9. PERFORMING ORGANIZATION NAME AND ADORESS Py e R T U R TS
SofTech, Inc.

460 Totten Pond Rd :25(3;53(6)503

Waltham MA 02154

1. CONTROLLING OFFICE NAME AND ADDRESS 12, REPORT DATE

Rome Air Development Center (ISIS) Fovember 1981

Griffiss AFB NY 13441 ;-o;“"'“ OF PAcEs
T4, MONITORING AGENCY NAME & ADDRESS(I! dilferent from Controlling Office) | 15. SECURITY CLASS. (of this report)

Same UNCLASSIFIED

[1Se. DECL ASSIFICATION/ DOWNGRADING |
SCHEDULE
N/A

ettt ot e ee—————
16. OISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstrect entered in Block 20, if dilferent from Report)

Same

18. SUPPLEMENTARY NOTES

RADC Project Engineer: Douglas A. White (ISIS)

19. XEY WOROS (Continue on reverse side if necessary and identity by block number)

JOVIAL (J73)
MIL-STD-1589A

Video Course

Higher Order Language

20. ABSTRACT (Continue on reverse side If necessary and identily by block number)

hiiallisne it s b0 Skl St o

The JOVIAL (J73) Workbook is only one portion of a self-instructional
JOVIAL (J73) training course. In addition to the programmed-learning
primer/workbooks, are video taped lectures. The workbooks are formatted
to consist of fifteen (15) segments bound in three (3) volumes covering
each particular language capability. A video tape lecture was prepared
for each workbook segment. This course is taught in two parts. Part I

contains twelve (12) segments in Volumes I and II of the workbook; Part II

DD , 3™, 1473 coiTion oF 1 Nov 6813 ORsOLETE UNCLASSIFIED

e e vy S
SECUMITY CLASSIFICATION OF THIS PAGE /"hen Date Entered)

Tet Kook AR A A AR TS

THE JOVIAL (J73) WORKBOOK
VOLUME 1

INTEGER AND FLOATING POINT
ITEM-DECLARATIONS

1081-1
April 1981

This material may be reproduced by
and for the US Government pursuant
to the copyright license under DAR
Clause 7-104.9(a) (1977 APR).

Submitted to

Department of the Air Force
Rome Air Development Center
1S1S
Criffiss Air Force Base, NY 13441

Prepared by
SofTech, inc.

460 Totten Pond Road
Waltham, MA 02154

©Copyright, SofTech, Inc., 1981

v

PREFACE

This workbook is intended for use with Tape 1 of the JOVIAL
(J73) Video Course. Its purpose is to elaborate upon and reinforce
concepts and language rules introduced in the videotape.

Following a brief introduction to High Order Languages and the
history of JOVIAL (J73), an overview of a complete JOVIAL {J73) pro-
gram is presented. Integer and floating point item-declarations are
then discussed in detail, followed by their use in assignment statements
and formulae. The final pages are a summary of the information pre-
sented in the first lesson.

1081-1 SOFlecd

b, M s v oAb S iR Bl st e L e i il eI

Section

TABLE OF CONTENTS

INTRODUCTION
PROGRAM OVERVIEW

DATA-DECLARATIONS: INTEGER AND
FLOATING POINT

ASSIGNMENT-STATEMENTS
FORMULAE

SUMMARY

1:3-1
1:4-1
1:5-1

1:6-1

SECTION 1

INTRODUCTION

WHY HIGH ORDER LANGUAGES?

High Order Languages (HOLs) permit programmers to write soft-
ware in an English-like expression-oriented notation, rather than in the
machine-oriented assembly languages actually "understood" by their
computers. For example, the operation coded by the HOL programmer as:

SETC=A+8B
might require the assembly language programmer to write:
LD A
AD B
STC

There are many advantages to the use of HOLs. Programs are
easier to read, reducing debugging and maintenance costs. They are
also easier to write, because programmers can learn HOLs more easily,
express their algorithms more naturally, and produce code more quickly.
Thus life cycle costs are lower.

HOls have been used almost exclusively in business programming
for many years, but assembly language is still heavily used for many
state-of-the-art scientific and military applications. There are several
reasons for this:

] HOLs are not always available for the selected computer.

. HOLs may not provide access to special features of the
computer,

° Use of HOLs may make it difficult to obtain the desired

software efficiency - programs may occupy more
memory or run more slowly than those written in
assembly language.
Modern developments in the design of HOLs and their translators
are overcoming many of these difficulties, and making the benefits of

HOL usage available to a wider variety of applications. Languages are

being designed to provide the needed capabilities, language translators

are employing sophisticated optimization techniques to produce more
efficient code, and language standardization is increasing the potential

1 for software reuse.

The following chart summarizes the three levels of programming

languages.

MACHINE LANCUAGE

ACTUAL BINARY INSTRUCTIONS EXECUTED ONE
AT A TIME BY THE COMPUTER:

01101100

10001101

ASSEMBLY LANGUAGE

MNEMONIC INSTRUCTIONS TRANSLATED ONE-FOR-
ONE TO MACHINE LANGUAGE EQUIVALENTS (BY
AN ASSEMBLER) :

LD A

AD 8

ST C

HIGH ORDER LANGUACGE (HOL)

MORE ENGLISH-LIKE INSTRUCTIONS TRANSLATED
ONE-TO-MANY TO MACHINE LANGUAGE
EQUIVALENTS (BY A COMPILER):

SETC=A+8B;

1081-1

:1-2

i

WHY A COMMON LANGUAGE?

There are presently many hundreds of HOLs in use for the develop-
ment of applications software. These different HOLs have been developed
to meet the specific needs of different applications, or to incorporate the
ideas and philosophies of different language designers. Many of these
HOLs are available on only a few kinds of computers.

This activity has led to many advances in language design, but
it has had significant costs in translator development and programmer
retraining. In recent years there has been an increasing interest in
language standardization, particularly within the Department of Defense.
This standardization will result in significant cost savings in translator
development and in programming training. An even more important cost
savings will come from software reusability.

When all software is written in the same language, it can be more
easily reused from one project to the next. Manry systems perform a
number of functions in common, affording many opportunities for soft-
ware reuse. For example, all on-board aircraft systems will contain
software to communicate with navigation systems. If such software is
written in a common language, it can be reused from one aircraft system
to another. Because the common HOL will be available on many different
computers, this is true even when the systems use different computers.
(This is called software portability.) The DoD expects to realise sub-

stantial cost savings through reuse of software written in a standard

common language.

1081-1 1:1-3 SOFlecH

THE DEVELOPMENT OF JOVIAL (J73)

The J73 language is the latest in an evolving JOVIAL family,
JOVIAL J3, the first widely used JOVIAL dialect, was used in many
Two dialects of J3 were designed
The Boeing B-1
program developed the J3B language, and the Air Force developed a
standard JOVIAL called J73, of which only a first level subset, J73/1,
was implemented.

military systems during the 1960's,
independently in the late 1960's and early 1970's.

When the DoD decided to establish interim standards for an HOL,
the Air Force programming community chose to combine the best features
of J3B and J73/1, to form a new language, also called J73. SofTech was
awarded a contract to perform this language design and to develop the
first set of J73 compilers. Several ongoing Air Force and Army programs

are now using J73. Figure 1-1 illustrates the J73 evolution.

1959 J0
n, J—ll,)2

1961 (MIL-STD-1588)

13 N

N
\
N
AN
Ju, Js N
N
1967 N
AN
N
138 T~ \
TN
7
J73/m, 3131
(MIL-STD-1589)
/ 17310
1979 (MIL-STD-1589A)
73
Figure 1-1. The JOVIAL Language Family
1081-1 1:1-4

FEATURES OF JOVIAL (J73)

] Modular constructs for "block-structured" programs -
this avoids multiple GOTOs.

® Structured control-flow statements such as loops,
IF, and CASE; restrictions on GOTO statement.

] Strong type checking to ensure that data will be used
as intended.
] Machine-specific functions and specified tables for

low-level operations and control of storage.
® Machine parameters for portability.

JOVIAL (J73) is defined by MIL-STD-1589A (USAF) 15 March 1979.
SofTech has also published the Computer Programming Manual for the
JOVIAL (J73) Language. These documents should be used for further
reference.

1081-1 1:1-5 SOF'.ECH i

SECTION 2
PROGRAM OVERVIEW

PROGRAM OVERVIEW 1

While every JOVIAL (J73) program has characteristics specific
to its algorithmic purpose, there are certain elements that have general
application. A brief look at these elements in the context of an actual
program will provide a useful starting point for a more detailed discussion
of the |anéuage.

Figure 2-1 is a sample of a complete JOVIAL (J73) program written
in one module (compilation unit). This program contains in one place
all the information necessary to perform a given algorithm. Notice that
this module is surrounded by a START and TERM. All JOVIAL (J73)
modules are delineated in this manner. Since this is a main program
module, the program is also given a name. A BEGIN/END pair surround
the program body.

A program must also have a name (see Figure 2-2). A name is
a sequence of letters, digits, dollar signs and primes. |t must begin
with a letter or dollar sign, and it must be at least two characters long.

A JOVIAL (J73) name can be any length, though the compiler only
looks at the first 31 characters (depending upon the implementation).
Names are discussed in more detail below.

Declarations appear at the beginning of each program and
associate names with programmer-supplied meanings.

NOTE: Except for statement-names, names of subroutines,
type names in point-item-descriptions, and formal para-
meter names, a name may not be used prior to the point

at which a declaration for that name appears.

1081-1 1:2-1 SOFlecH

rome W c—

SISt it o I SN RASS As §

START| "PROGRAM MODULE"
PROGRAM PERFECT'NUMBER ;

"THIS PROGRAM FINDS ALL PERFECT NUMBERS IN THE RANGCE 2..1000"
"A PERFECT NUMBER IS A NUMBER THAT IS EQUAL TO THE SUM OF
ALL ITS FACTORS EXCEPT ITSELF"

"PERFECT NUMBER"
"DECLARATIONS"

TABLE FACTAB (1 : 500) ;
ITEM FACTOR B ;
TABLE PERFECTAB (1 : 1000) ;
ITEM PERFECT B ;

ITEM SUM U ;

"EXECUTION - FOR EACH INTEGER IN THE RANGE 2..1000 CALL A SUBROUTINE
TO FIND THE FACTORS, SUM THE FACTORS, TEST, IF PERFECT FLAG TRUE"

FOR | : 2 BY 1 WHILE | <= 1000 ;
BEGIN "FOR LOOP"

FINDFACTOR (! : FACTAB) : "SUBROUTINE CALL"
SUM =0 ;
FOR J : 1t BY 1 WHILE J < | ; "SUM THE FACTORS"

IF FACTOR (J) :
. SUM = SUM + J;
IF SUM = | ; “TEST IF PERFECT"
PERFECT (1) = TRUE ; "FLAG IF PERFECT"
END "FOR LOOP"

PROC FINDFACTOR (NUMBER : FACTORTAB) :

"THIS PRQCEDURE TAKES ANY NUMBER AS INPUT. BUT WILL ONLY EXECUTE
CORRECTLY FOR NUMBERS IN THE RANGE 1..1000 - THE PROCEDURE
OUTPUTS A TABLE OF FACTORS IN THE RANGE 1..NUMBER/2"

BEGIN "PROC FINDFACTOR"
"DECLARATION OF FORMAL PARAMETERS"

ITEM NUMBER U
TABLE FACTORTAB (1 : 500);
ITEM FACTORBIT B;

"EXECUTION - INITIALIZE ALL FACTORS FALSE, FOR EACH INTEGER IN THE
RANGE 1..SQUARE ROOT OF INTEGER, TEST IF IT (S A FACTOR, IF IT
IS, FLAG THE BIT TRUE AND FLAG ITS CO-FACTOR TRUE;

FOR | : 1 BY 1 WHILE | <= 500 ; “INITIALIZE"
FACTORBIT (1) = FALSE ;

FOR 1 : 1 BY 1 WHILE | <= (* U *) (NUMBER ** .5);
IF NUMBER MOD | = 0; "TEST IF REMAINDER = 0, THEN A FACTOR"

BEGIN "SET FACTOR BITS"
FACTORBIT (1) = TRUE :
FACTORBIT (NUMER / |) = TRUE;
END "SET FACTOR BITS"

END “PROC FINDFACTOR"

"PERFECT'NUMBER"

Figure 2-1. START/TERM and BEGIN/END Program Delineators

2

» START "PROQCRAM M LE"
| PROGRAM [PERFECT'NUMBER] ;

"THIS PROGRAM FINDS ALL PERFECT NUMBERS IN THE RANGE 2..1000"
"A PERFECT NUMBER IS A NUMBER THAT IS EQUAL TO THE SUM OF
ALL 1TS FACTORS EXCEPT ITSELF"

BEGIN "PERFECT NUMBER"
"DECLARATIONS"

TABLE FACTAB (1 : 500) ;
ITEM FACTOR B
TABLE PERFECTAB (1 : 1000) ;
ITEM PERFECT B ;

ITEM SUM U ;

"EXECUTION - FOR EACH INTEGER IN THE RANGE 2..1000 CALL A SUBROUTINE
TO FIND THE FACTORS, SUM THE FACTORS, TEST, IF PERFECT FLAG TRUE"

FOR | : 2 BY 1 WHILE | <= 1000 ;
BEGIN "FOR LOOP"

FINDFACTOR (! : FACTAB) : "SUBROUTINE CALL"
SUM =0 ;
FORJ : 1 BY 1 WHILE J < | ; "SUM THE FACTORS"

IF FACTOR (J)
SUM = SUM + J;
IF SUM =1 ; "TEST IF PERFECT"
PERFECT ()) = TRUE ; "FLAG IF PERFECT"
END "FOR LOOP"

PROC FINDFACTOR (NUMBER : FACTORTAB) :

"THIS PROCEDURE TAKES ANY NUMBER AS INPUT, BUT WILL ONLY EXECUTE
CORRECTLY FOR NUMBERS IN THE RANGE 1..1000 - THE PROCEDURE
OUTPUTS A TABLE OF FACTORS IN THE RANGE 1..NUMBER/2"

BEGIN "PROC FINDFACTOR"
"DECLARATION OF FORMAL PARAMETERS"

ITEM NUMBER U ;
TABLE FACTORTAB (1 : 500);
ITEM FACTORBIT B;

"EXECUTION - INITIALIZE ALL FACTORS FALSE, FOR EACH INTECER IN THE
RANGE 1..SQUARE ROOT OF INTEGER, TEST IF IT IS A FACTOR, [F IT
1S, FLAG THE BIT TRUE AND FLAG ITS CO-FACTOR TRUE:

FOR 1 : 1 BY 1 WHILE | <= 500 ; "INITIALIZE"
FACTORBIT (1) = FALSE ;

FOR I : 1 BY 1 WHILE | <= (* U *) (NUMBER ** .5);
IF NUMBER MOD | = 0; "TEST IF REMAINDER = 0, THEN A FACTOR"

BEGIN "SET FACTOR BITS"
FACTORBIT (I) = TRUE ;
FACTORBIT (NUMER / |) = TRUE;
END "SET FACTOR BITS"

END "PROC FINDFACTOR"

END "PERFECT'NUMBER"
TERM

Figure 2-2, JOVIAL (J73) Program Name

1081-1 1:2-3 SOFlec4

- T Yy

Data~declarations declare data-names and their attributes (Figure
2-3). There are three kinds of data structures in J73:
] item - A simple data object of the language. An item is a

variable of a pre-defined or programmer-defined type hav-
ing no constituents.

] Table - An aggregate data object consisting of a collection
of one or more items, or an array of such collections.

° Block - A group of items and tables and other blocks

allocated a contiguous area of storage.

Items and tables may be variable or constant; blocks may contain
constant items and tables. The declaration of a variable data object pro-
vides information that is used when it is allocated storage in memory.
Variable data objects may be preset (given an initial value), referenced
(read), changed (written) and possibly deallocated. A constant data
object is preset to its constant value; it may only be referenced (read). i
In some cases, the value of a constant data object may be allocated stor-

age in memory, but in many cases the value is embedded into the code of
the compiled program.

The compiler allocates data objects on a word by word basis (unless
otherwise specified, using the advanced features of the language). This
means that each component of each data object is allocated a new word.

In order for a J73 program to actually "do" anything, it must con-
v ’ tain executable statements (see Figure 2-4)}. Statements are the means
by which computational algorithms are specified. They control the execu-
tion of the complete program. There are ten varieties of executable state-
ments in J73:

I'd

® assignment statements
' loop statements
1 ° IF statements
1) CASE statements
° procedure call statements

1081-1 1:2-4

g g

g ey

tTTY T
»

START "PROGRAM MODULE"
PROGRAM PERFECT'NUMBER

"THIS PROGRAM FINDS ALL PERFECT NUMBERS IN THE RANGE 2..1000"
"A PERFECT NUMBER IS A NUMBER THAT IS EQUAL TO THE SUM OF
ALL ITS FACTORS EXCEPT ITSELF"
BEGIN "PERFECT NUMBER"

"DECLARATIONS"

TABLE FACTAB (1 : 500) ;
"ITEM FACTOR B ;
TABLE PERFECTAB (1 : 1000) ;
ITEM PERFECT B ;

ITEM SUM U ;

"EXECUTION - FOR EACH INTEGER IN THE RANGE 2..1000 CALL A SUBROUTINE
TO FIND THE FACTORS, SUM THE FACTORS, TEST, IF PERFECT FLAG TRUE"

FOR 1 : 2 BY 1 WHILE | <= 1000 ;
BEGIN "FOR LOOP"

FINDFACTOR (I : FACTAB) : "SUBROUTINE CALL"
SUM = 0 ;
FOR J : 1 BY 1 WHILE J < | ; "SUM THE FACTORS"

IF FACTOR (J) .
SUM = SUM + J;
IF SUM = | ; "TEST IF PERFECT"
PERFECT (1) = TRUE ; “FLAG IF PERFECT"
END "FOR LOOP"

PROC FINDFACTOR (NUMBER : FACTORTAB) :

"THIS PROCEDURE TAKES ANY NUMBER AS INPUT, BUT WILL ONLY EXECUTE
CORRECTLY FOR NUMBERS IN THE RANGE 1..1000 - THE PROCEDURE
OUTPUTS A TABLE OF FACTORS IN THE RANCE 1..NUMBER/2"

BEGIN "PROC FINDFACTOR"

"DECLARATION OF FORMAL PARAMETERS"

ITEM NUMBER U ;
TABLE FACTORTAB (1 : 500);
ITEM FACTORBIT B;

"EXECUTION - INITIALIZE ALL FACTORS FALSE, FOR EACH INTEGER IN THE
RANGE 1..SQUARE RQOT OF INTECER, TEST IF IT IS A FACTOR, IF IT
IS, FLAG THE BIT TRUE AND FLAG ITS CO-FACTOR TRUE;

FOR I : 1 BY 1 WHILE | <= 500 ; “INITIALIZE"
FACTORBIT (1) = FALSE ;

FOR 1 : 1 BY 1 WHILE ! <= (* U *) (NUMBER ** 5);
IF NUMBER MOD | = 0; “"TEST IF REMAINDER = 0, THEN A FACTOR"

BEGIN "SET FACTOR BITs"
FACTORBIT (l) = TRUE ;
FACTORBIT (NUMER / I) = TRUE;
END "SET FACTOR BITS"

END "PROC FINDFACTOR"

END "PERFECT'NUMBER"
TERM

Figure 2-3. J73 Main Program & Subroutine Data Declarations

1081-1 1:2-5 SOFlecH

START "PROGRAM MODULE"
PROGRAM PERFECT'NUMBER ;

"THIS PROGRAM FINDS ALL PERFECT NUMBERS IN THE RANGE 2..1000"
"A PERFECT NUMBER IS A NUMBER THAT IS EQUAL TO THE SUM OF
ALL ITS FACTORS EXCEPT ITSELF"

BEGIN "PERFECT NUMBER"
"DECLARATIONS"

TABLE FACTAB (1 : 500) :
ITEM FACTOR B ;
TABLE PERFECTAB (1 : 1000) ;
ITEM PERFECT B :

ITEM SUM U ;

"EXECUTION - FOR EACH INTEGER IN THE RANGE 2..1000 CALL A SUBROUTINE
TO FIND THE FACTORS, SUM THE FACTORS, TEST, IF PERFECT FLAGC TRUE"

rFoR 1 : 2BY 1 WHILE | <= 1000 ;
BEGIN "FOR LOOP"

r— FINDFACTOR (! : FACTAB) ; "SUBROUTINE CALL"
SUM =0 ;
FOR J : 1 BY 1 WHILE J < | ; "SUM THE FACTORS"

IF FACTOR (J) .

SUM = SUM + J;
IF SUM =1 ; "TEST IF PERFECT"
PERFECT (l) = TRUE ; "FLAG IF PERFECT"
END "FOR LOOP"

PROC FINDFACTOR (NUMBER : FACTORTAB) :

"THIS PROCEDURE TAKES ANY NUMBER AS INPUT, BUT WILL ONLY EXECUTE
CORRECTLY FOR NUMBERS IN THE RANGE 1..1000 - THE PROCEDURE
OUTPUTS A TABLE OF FACTORS [N THE RANGCE 1..NUMBER/2"

BEGIN "PROC FINDFACTOR"
"DECLARATION OF FORMAL PARAMETERS"
ITEM NUMBER U :
TABLE FACTORTAB (1 : 500);
ITEM FACTORBIT B;
"EXECUTION - INITIALIZE ALL FACTORS FALSE, FOR EACH INTEGER IN THE

RANGE 1..SQUARE ROOT OF INTEGER, TEST IF IT IS A FACTOR, IF IT
1S, FLAG THE BIT TRUE AND FLAG ITS CO-FACTOR TRUE;

;’FOR I : 1BY 1 WHILE | <= 500 ; “INITIALIZE"

FACTORBIT (1) = FALSE ;

FOR 1 : 1 BY 1 WHILE | <= (* U *) (NUMBER ** .5);
IF NUMBER MOD | = 0; "TEST {F REMAINDER = 0, THEN A FACTOR"
BEGIN "SET FACTOR BITS"
FACTORBIT (1) = TRUE ;
FACTORBIT (NUMER / 1) = TRUE;
, END "SET F'ACTOR BITS"

END "PERFECT'NUMBER"
TERM

Figure 2-4. Executable Statements

RETURN statements
GOTO statements
EXIT statements
) STOP statements
° ABORT statements
These will be introduced gradually during the course.

Subioutines to be used in the program may be defined following
the execulable statements of the main program. Subroutines are like small

programs that are executed when they are called. [f the same group of

executab:= s"mtements is needed at more than one point in the program, or
if these executable statements perform a single, logical function, a sub-
routine that contains those statements may be written and then called from
anywhere in the program. In the body of the subroutine, as in the body
of the program itself, declarations appear first, followed by executable
statements (see Figures 2-3 and 2-4).

SYNTAX

The syntax conventions used in the JOVIAL (J73) Video Course

and workbook are as follows:

Syntax

[some-feature])

{one | other}

(this-one
that-one

= letter ...

(letter), ...

1 this-one~
‘ [that—one) !
+ another

Paand S s i
-

1081-1

Meaning

Brackets indicate an
optional feature.

Braces with a vertical
bar indicate disjunction-
a choice between
alternatives.

Braces with each feature
on separate lines indicate
disjunction - a choice
between alternatives.

The sequence '...'
indicates one or more
repetitions of a feature.

The sequence "..."
following a comma (or a
colon) indicates one or
more repetitions of the
feature separated by
commas (or colons).

Syntax symbols may be
combined.,

1:2-8

Sample Expansions

some-feature
OR
nothing

one
OR
other

this-one
OR
that-one

letter
letter letter
letter letter letter

.o

(letter)
(letter) (letter)
(letter) (letter) (letter)

e

this-one + (another)
that-one + (another)
+ (another)

R

{
s {
| SECTION 3
DATA-DECLARATIONS: ’
E INTEGER AND FLOATING POINT
!
.
@
E
| SOFlecH

b e e

O

DATA-DECLARATIONS: INTEGER AND FLOATING POINT

As mentioned in the previous section, data-declarations declare
data-names and their attributes for the three kinds of J73 data structures-
items, tables and blocks. This section begins to address the first of

these structures -- items.
There are seven kinds of items in JOVIAL (J73):

. integer (signed and unsigned) - signed integer items are
used for non-negative and negative whole number values;
unsigned integer items are used for non-negative whole
number values only.

° floating point - used for fractional values

° fixed point - used for fractional values

[bit - used for a string of bits

° character - used for a string of characters (bytes)

° status - aflows ali possible values of an item to be
enumerated

° pointer - used for an item which contains as its value a

machine address

The same general rules of syntax apply to each type (see Figure
3-1), though only integer and floating point items will be discussed in
this first workbook.

[CONSTANT] ITEM name Gg:_’t“;e::fri‘gggn> [item-preset];

Figure 3-1, General Syntax for Item Data Declarations

ITEM

B

ITEM is a JOVIAL (J73) reserved word. It has a specific
meaning to the compiler, which restricts its use to declara-
tion. It cannot be used as a name,

A name is a sequence of letters, digits, dollar signs and
primes (single quote characters). It must begin with a
letter or a dollar sign, and be at least two characters

long. A name may be any length, though only the first
thirty-one characters are examined for uniqueness within
the program. (Fewer than thirty-one characters may be
examined for external names., External names are discussed
in Tape 8.*

All JOVIAL (J73) statements must end with a semi-colon.

*The following are JOVIAL (J73) reserved words, and cannot be used as

names:

1081-1

ABORT | ABS | AND | BEGIN | BIT
CITSIZE | BLOCK | BY | BYTE
BYTESIZE | CASE | COMPOOL
CONSTANT | DEF | DEFAULT

DEFINE | ELSE | END | EQV
FALLTHRU | FALSE | FIRST | FOR
GOTO | IF | INLINE | INSTANCE
ITEM | LABEL | LAST | LBOUND
LIKE | LOC | MOD | NEXT | NOT
NULL | NWDSEN | OR | OVERLAY
PARALLEL | POS | PROC | PROGRAM
REC | REF | RENT | REP | RETURN
SGN | SHIFTL | SHIFTR | START
STATIC | STATUS | STOP | TABLE
TERM | THEN | TRUE | UBOUND
WHILE | WORDSIZE | XOR

1:3-2

2 A L O AN el .ty ol L5 0m ey ph e o L e - . B N P PUPN

e

INTEGER ITEM-DECLARATIONS

An integer is a positive or negative whole number value. Data
objects which are to be used as integers must be so declared at the begin-
ning of a program or subroutine. In its simplest form, an integer item-
declaration might look like this ~--

ITEM name type-description semi-colon
+ ¥ 2 ¥
ITEM SUM S 15 ;

ITEM JOVIAL (J73) reserved word.

A legal JOVIAL (J73) name (unique and supplied by the
programmer).

| type-description] The type-description for an integer consists of a
single letter type indicator and an optional integer-size.
The type indicators are:

U - an unsigned integer type used to represent non-
negative number values

S - A signed integer type, used to represent both
negative and non-negative whole number values.

Integer-size specifies the minimum number of bits of

storage to be allocated to hold the value of the integer

item. If integer-size is omitted, it defaults to BITSINWORD-1
(a single word integer). (BITSINWORD is an implementation
parameter equal to the number of bits in a JOVIAL (J73)
word.)

m A semi-colon terminates the declaration.

Thus, ITEM SUM S 15; declares an item SUM to be a signed integer
item allocated at least 15 bits of storage for its value and one sign bit.
Consider the following examples:

1081-1 1:3-3 SOFlecH

type~ semi-
ITEM name description colon

¥ ¥ ¥ ¥

ITEM SPEED Uu 10 ; SPEED is an unsigned integer variable
allocated 10 bits of storage for its
non-negative integer value

ITEM DISTANCE S 6 : DISTANCE is a signed integer variable
allocated 6 bits of storage for its
non-negative or negative integer
value and one sign bit

ITEM AREA u ; AREA is an unsigned integer variable
allocated 1 word of storage (including
sign bit). If BITSINWORD is 16
area is allocated 15 bits for its value

ITEM METERS S ; METERS is a signed integer variable
allocated 1 word of storage (including
sign bit). If BITSINWORD is 32,
meters is allocated 31 bits for its
value.

—NO TES: In many cases, the programmer . choose to

ignore the number of bits allocated for an integer item and
use the compiler default. A single-word integer is sufficiently
large for many computations. There are two cases where
integer-size must be specified:

] When memory space it sight and more than one item

s to share a word of memory, integer-size needs to
be specified.

o When the values to be represented in an integer
item are larger than can be represented in one

. word, a double-word integer-size needs to be

specified.

If BITSINWORD is a 16, a U 16 will be allocated two words.

1081-1 1:3-4

NAMES - EXERCISES

Indicate whether the following are valid or invalid names:

Name Valid invalid
VELOCITY

BETA1

2BETA

$$

OUTSOFSTOCK

STOCK NUMBER
STOCKNO.
STAT'BIT

1081-1 1:3-5 SOF"ECH

L ST e ok S Rat A

ANSWERS

Indicate whether the following are valid or invalid names:

Name Valid Invalid

VELOCITY X

BETA1 X

2BETA X (begins with number)
$$ X

OUTOFSSTOCK X

STOCK NUMBER X (blank not allowed)
STOCKNO. X (period not allowed)
STAT'BIT X

1081-1 1:3-6

Integer Item-Preset

An item-preset provides an initial value for an item declared to be
a variable and a constant value for an item declared to be CONSTANT
(discussed next). An integer literal (a sequence of one or more digits
interpreted as a decimal value) may be used to preset integer items. An
item preset follows the type-description:

ITEM name type-description [item-preset]:

The item-preset looks like this:

= value
For example:
type- item- semi-

ITEM name description preset colon

¥ ¥ ¥ ¥ ¥

ITEM SPEED Uu 10 = 967 : SPEED is a 10 bit unsigned
integer variable which is
preset to 967.

ITEM DISTANCE S 6 = 33 H DISTANCE is a 6 bit signed
integer variable preset
to 33,

ITEM AREA U = 3 ; AREA is a single-word
unsigned integer variable
which defaults to the size
of one word and is preset
to 3.

ITEM METERS S = 42 : METERS is a single word

signed integer variable
which defaults to the size
of one word and is preset
to 42,

1081-1 1:3-7 SOFlec4

R ARt _ U e

NOTES: An item-preset gives an initial value to an item.
All items that are not preset have unknown values. That
is, there is no implicit system initialization for items that

are not preset.

It is the programmer's responsibility to ensure that the
value of the item-preset can be represented in the

explicit or default integer-size,
A negative value may be used to preset a signed integer:
ITEM N'METERS = -42;

The preset value in this case is syntactically an integer

formula, not an integer literal.

Constant Integer ltems

An item may be declared to be constant, in which case its value
cannot be changed during execution. A constant item must be given an
initial value by means of an item-preset. The form of a constant item -

declaration is as follows:

CONSTANT] item name type-description [item-preset] ;

Examples:
CONSTANT ITEM FIRSTNUM U 5 = 27;
CONSTANT ITEM LOWESTVAL S = 0;
CONSTANT ITEM DOLLARS U 10 = 1000;

CONSTANT ITEM $ALL S = 57;

A consistant-item always maintains its preset value, a constant-item may
not have its value changed within a program.

1081-1 1:3-8

e e Y

INTEGER TYPE-DECLARATIONS

A type-declaration allows a programmer to declare a new, possibly
more mnemonic name to describe the type of an item. The type-declaration
sets up a template that may be used in place of a type-description. The
form of an item type-declaration is:

TYPE item-type-name type-description;

The item type-declaration associates the item type-name with the attributes

of the type-description.

NOTE: A type-declaration has no item-preset because it
declares no data. A type-declaration creates a template.
It defines what data described using a particular type-

name will look like.

Once a type-name has been declared, it may then be used in any
item-declaration in place of the explicit type-description, as shown in the
syntax below:

type-description

[CONSTANT] ITEM name(item_type_name

) [item~preset];
For example:
TYPE DIGITS S 7;
This type-declaration declares an item type-name DIGITS that may be used
to describe the type of data objects. The declaration of DIGITS sets up

a template for seven-bit signed integers, and may be used as follows:

ITEM MAXVAL DIGITS;

- TWRS Y VTFT T eTTYMn Y "7 -.w.-ﬂm,..v-—..,—-j

MAXVAL is declared to be a signed integer item, allocated seven

bits of storage for its value and one sign bit.

Examples:

Having made the following type-declarations:

TYPE DIGITS S 7;
TYPE COUNT U 10;

The following are correct uses of the item-type-names DIGITS and COUNT

in item-declarations:

ITEM SUM DIGITS = 17;

ITEM MAXNUM DIGITS:

ITEM XCOORD COUNT;

ITEM NUMBER COUNT = 0;

ITEM SOME'VALUE COUNT;
ITEM TOTAL$ DIGITS:

CONSTANT ITEM AMOUNT
COUNT = 49;

ITEM GUESS DIGITS;

1081-1

Explanation

SUM is declared to be a 7 bit signed
integer item preset to 17.

MAXNUM is a seven bit signed integer
item.

XCOORD is declared to be of type
COUNT, which makes it able to store
unsigned integer values of up to 10
bits.

NUMBER is of type COUNT and is
preset to zero.

SOME'VALUE is of type U 10

TOTALS$ is declared to be of type
DIGITS, and can assume signed
integer values which require 7 bits
or less of storage.

AMOUNT is a constant item of type
COUNT, whose value will always be 49,

GUESS is a 7 bit signed integer
variable.

There are two advantages to declaring and using item-type-names

|
instead of explicit type-descriptions. First, the item-type-name itself {
may provide some information to the reader about the intended use and !
class of an item. For example, if several items are to be used as counters,

an item type-declaration could be written and used as follows:

TYPE COUNTER S 15;

ITEM OUTER'LOOP COUNTER;
ITEM MIDDLE'LOOP COUNTER;
ITEM INNER'LOOP COUNTER;

Second, using the item-type-name makes global changes quite simple.

1:3-11/1:3-12

I R RGIT TRTCY

INTEGER ITEM-DECLARATIONS - EXERCISES

Given the following type-declaration:
TYPE SHORTNUM S 10; .
Determine whether the following item-declarations are correct

or incorrect:

Declaration Correct Incorrect
1. ITEM NAME U 7 =1;

2. ITEM NO.NUM S = 13;

% 3. ITEM PLANE SHORTNUM;

: §, ITEM AREA SHORTNUM = 2000;

5. CONSTANT ITEM TRI'SIDE S 4;
6. CONSTANT ITEM SQUARE U 8= 7;
7. CONSTANT ITEM CIRCLE SHORTNUM = 36;

8. ITEM DISTANCE SHORTNUM S 10;

* ANSWERS

Given the following type-declaration:
TYPE SHORTNUM S 10;
Determine whether the following item-declarations are correct

or incorrect:

Declaration Correct
1. ITEM NAMEUVU 7=1; X

2. ITEM NO.NUM S =13;
L 3. ITEM PLANE SHORTNUM; X

(4. ITEM AREA SHORTNUM = 2000; X

3 (but code erroneous)
: 5. CONSTANT ITEM TRI'SIDE S 4;

6. CONSTANT ITEM SQUARE U 8=17; X

7. CONSTANT ITEM CIRCLE SHORTNUM = 36; X

8. ITEM DISTANCE SHORTNUM S 10;

} 1081-1 1:3-14

i . ot
. S LA At SR - ol L s e DI M A A e T o 5 s

Incorrect

X (period not allowed)

X (need preset)

X (either SHORTNUM
or S 10, not both)

r———— s - ¢

FLOATING POINT ITEM-DECLARATIONS

Another type of JOVIAL (J73) item is the floating point item, used
to represent numbers with fractional values. The general syntax for
floating point item-declarations is the same as shown for integers:

[CONSTANT] ITEM name(itg’e?:_-t(;e::_rri\gggn)[item-preset];

The item-declaration for a floating point item might look like this:

ITEM name type-description semi-colon
+ 4 4 ¥
ITEM RADIUS F 20 ;
ITEM JOVIAL (J73) reserved word.
A legal JOVIAL (J73) name (unique and supplied by the
programmer)

[type-description] The type-description for a floating point item consists
of a single letter type-indicator and an optional precision
specifier. The type-indicator is

F - floating point type
Precision specifies the minimum number of bits of storage

to be allocated to hold the mantissa. (Precision does not
include any exponent or sign bits.) If the precision is
omitted, it defaults to FLOATPRECISION. (FLOATPRECISION
is an implementation-parameter equal to the number of bits
needed for a single-precision floating point representation.)

E A semi-colon terminates the declaration,

The following item-declaration:

ITEM RADIUS F 20;

1081-1 1:3-15 SOFI'ECH

WD 5. 3t B faal K W aflo r St -c i T e =

AT

declares an item named RADI{US to be of floating point type, and allocated

at least 20 bits for the mantissa of the floating point representation.

following are more examples of floating point item declarations:

ITEM
¥

ITEM

ITEM

type- semi-
name description colon
+ ¥ ¥
AZIMUTH F 30 ; AZIMUTH is a floating point
variable allocated at least
30 bits for its mantissa.
VELOCITY F ; VELOCITY is a floating point

variable. |f FLOATPRECISION
is 23, it is allocated 23 bits

for its manitssa.

NOTES: As with integers, in many cases a programmer
can choose to ignore thenumber of bits allocated for a
floating point item and use the compiler default. There

are only two sizes of floating point types that are allocated:
single precision or double precision. For example, if
FLOATPRECISION is 23, the following items are allocated

as single precision floating point items:
ITEM RADIUS F 20;
ITEM SEARCH F;
ITEM LIMIT 5;

The precision specifier in floating point type-description
must be used to indicate a double precision floating point
type: _

ITEM MEASURE F 39;

Floating Point Item-Presets

for an item declared to be a variable and a constant value for an item
declared to be constant.

As mentioned previously, an item preset provides an initial value

point data. A real literal is any one of the following:

1081-1

1:3-16

A real literal may be used to preset floating

Decimal number 12.
6.097
Decimal number followed 436.123E5
by an exponent - 2.97E-7
Integer followed by an 256E-8
exponent 1E4

The form of a real literal with an exponent is interpreted as
follows:

: 1E4 + 1*10* > 1000

(The positive exponent causes the decimal point to be interpreted that
many places to the right.)

As another example:

2.97E-3 + 2.97%10" 3% » .00297

(The negative exponent causes the decimal point to be interpreted that

many places to the left.)

The form of an item-preset is as follows:

ITEM name type-description ;

where the preset looks like this:

. = value L

NOTE: The only difference between integer and floating
F point item-presets is that the latter are preset with real

Iiterals as opposed to integer literals.

1081-1 1:3-17

e ———— e S N sl e T T

Examples:

type- item- semi-
ITEM name description preset colon
¥ ¥ ¥ ¥ ¥

ITEM RADIUS F 20

3.912 : RADIUS is a floating point
variable allocated at least
20 bits of precision and
preset to 3.912.

ITEM SEARCH F

1.6E3 ; Item SEARCH is a floating
point variable allocated a
default number of bits of
precision (FLOATPRECISION)
and preset to 1.6E3.

ITEM LIMIT F 30 16. ; LIMIT is a floating point
variable allocated at least
30 bits of precision and
preset to 16.

NOTES: An item-preset gives an initial value to an item.
All that are not preset have unknown value. That is, there
s no implicit system initialization for items that are not
preset. A negative value may be used to preset a floating
point item:

ITEM N-MEASURE F = -6, 725;

The preset value in this case is syntactically a floating
formula, not a floating literal.

Constant Floating Point Items

As with integers, floating point items may be declared to be
constant. The value of a CONSTANT item cannot change during program
execution. A constant item must be given an initial value by means of
an item preset. The form of a CONSTANT item declaration is:

CONSTANT] ITEM name type-description [item preset|;

1081-1 1:3-18

Examples:
CONSTANT ITEM ORIG'VAL F 10 = 16.29;
CONSTANT ITEM NEXT'VAL F = .0629E4;
CONSTANT ITEM COEFFICIENT F 20 = 21.36;
CONSTANT ITEM DISTANCE F = ,001;

1081-1 1:3-19

,;
*
|
|
Jj
|

e T PR SNSRI Y) QB2 &1 we tie R O . 7 v

FLOATING POINT TYPE-DECLARATIONS

As mentioned in the section on integers, a type-declaration may be
used to allow a programmer to declare a new name to describe the type of
an item. The type-declaration sets up a template that may be used in place
of a type-description. The form of an item type-declaration is:

TYPE item-type-name type-description;

The item type-declaration associates the item-type-name with the attribute

of the explicit type-description.

NOTE: A type-declaration has no item-preset because it
declares no data. A type-declaration creates a template.
It defines what data described using a particular type-

name will look like.

Once an item-type-name has been declared, it may be used in any
item-declaration in place of the explicit type-description, as shown in the
syntax below:

type-description

item~-type-name } litem-preset];

[CONSTANT] ITEM name(

For example,

TYPE LONG'FLOAT F 39;

This type-declaration declares an item-type-name LONG'FLOAT that may
be used to describe the type of data objects. The declaration of LONG'-
FLOAT sets up a template for floating point types with at least 39 bits
of precision that may be used as follows:

ITEM MEASURE LONG'FLOAT;

i
4
i
i

MEASURE is declared to be a floating point type with at least 39 bits of
precision by using the item-type-name LONG'FLOAT instead of the
explicit type-description.

Examples:

Having made the following type-declaration:
TYPE LENGTH F 12;

The following are correct uses of the item-type-name LENGTH
in an item~declaration:

ITEM VARX LENGTH;
ITEM TAXES LENGTH = .162E2;
CONSTANT ITEM P! LENGTH = 3.14159;

1081-1 1:3-21/1:3-22 SOFTecH

FLOATING POINT ITEM-DECLARATIONS - EXERCISES

Determine whether the following item declarations are correct

or incorrect. J
Given the following type-declaration :

TYPE LONGNUM F 30;

Declaration . Correct Incorrect

i
1. ITEM XCOORD F 20;
2. ITEM PEOPLE LONGNUM = 3, 629; |
3. CONSTANT ITEM NAMES; 1
4. CONSTANT ITEM BOOKS'IN'PRINT = 3E-67
5. ITEM RIGHT LONGNUM = .000001; !
6. ITEM NO CASE LONGNUM; !
7. ITEM AA F 15 = 69; {

1081-1 1:3-23 5a=rec'_'

2 L7 A SR St S MR SR

ANSWERS

Determine whether the following item declarations are correct
or incorrect.
Given the following type-declaration:

TYPE LONGNUM F 30;

Declaration CorrectA Incorrect

1. ITEM XCOORD F 20; X

2. ITEM PEOPLE LONCNUM = 3,629; X

3. CONSTANT ITEM NAMES; X (need type, preset)
4, CONSTANT ITEM BOOKS'IN'PRINT = 3E-67 X (need type, ;) !
5. ITEM RIGHT LONGNUM = ,000001; X

6. ITEM NO CASE LONGNUM; X (blank in name)

7. ITEM AA F 15 =69; X (need real preset)

1081-1 1:3-24

SECTION 4
ASSIGNMENT-STATEMENTS

ASSIGNMENT-STATEMENTS

One important use of integer and floating point data items is in

assignment-statements. An assignment-statement causes the value to the

right of the equal sign (the source) to become the value of the variable

or variables to the left of the equal sign (the target):

TARGET(S)
variable,

value of one target variable.

DISTANCE = 2.5;
CASH = 40;

DENSITY = ORIG'VAL;

SCAN = 3.2E-7;

SOURCE
value

For example:

A simple assignment-statement assigns the value of a source to be the

A multiple assignment-statement assigns a source value to more than one

target variable. For example:

LENGTH, WIDTH, HEIGHT = 0;

= source) is evaluated first.

variables is exhausted.

NOTE: In performing the assignment, the formula (or
Then, the leftmost variable
is evaluated and the value of the formula is assigned to
that variable. Next, the second-to-the-left variable is
evaluated and the value of the formula is assigned to it.
This sequence of evaluations continues until the list of

1081-1

o amp e e

o i T g 3+~ . AP 4= TR A A - S Wi

eI « ity

e g

For an assignment-statement to be correct semantically, the type

of the source value must be equivalent or implicitly convertible to the type
of the target variable(s) receiving the assignment.

Equivalent types are those that the compiler recognizes as being
the same. Neither the programmer nor the compiler needs to provide any
additional information to make the types match. Two integer types are
egivalent if they are both unsigned or both signed, and they have the
same integer-size (explicitly or by default). Two floating point types
are equivalent if they have the same precision (explicitly or by default).

Implicitly convertible types are those types that the compiler
recognizes as being almost the same. The programmer doesn't have to
provide any additional information to the compiler. but the compiler auto-
matically generates some code to make the types match.

Any integer type is implicitly convertibie by the compiler to any
other integer type. Only smaller precision flo’ating point types are
implicitly convertible by the compiler to a larger floating point type.

Look at sample integer types and how the type matching rules
apply to assignment-statements.

TYPE SMALL S 10;

ITEM ROOM S 10;

ITEM CARS U 6;

ITEM MAGAZINES SMALL;

MAGAZINES and ROOM have EQUIVALENT types - they are both S 10's -
so the following assignment-statements may be made:

MAGAZINES = ROOM;
ROOM = MAGAZINES;

The type of CARS is IMPLICITLY CONVERTIBLE to the type of
MAGAZINES - they are both integer types. The following assignment
can be made:

MAGAZINES = CARS;

1081-1 1:4-2

B R T e e T

(Eaaali ol A

The type of MAGAZINES is sufficient for all possible run time values of
CARS.

The type of MAGAZINES is IMPLICITLY CONVERTIBLE to the type
of CARS - they are both integer types.

The following is a legal assignment:
CARS = MAGAZINES;

However, the type of cars is not sufficient for all possible run-time values
of MAGAZINES. If the run-time value of MAGAZINES is negative or
greater than 63, the results of the assignment are unpredictable.

Given the following declarations:
TYPE BALANCE S 6;
TYPE PROFIT U 10;
ITEM TOTAL S 6;
ITEM CLIMAX U 4;
ITEM SAVINGS S 10;
ITEM CHECK BALANCE;
ITEM BANK PROFIT;
The following assignment-statements have the following results:

TOTAL = CHECK; The types are equivalent; no conversion is needed;
the assignment is made,

BANK = CLIMAX; The type of CLIMAX is implicitly converted to the
type of BANK, and the assignment is made.

CLIMAX = BANK; The assignment is made; if the run-time value in
BANK cannot fit in CLIMAX, the results are
unpredictable.

SAVINGS = TOTAL; The type of TOTAL is implicitly converted to the
type of SAVINGS, and the assignment is made.

CHECK = SAVINGS; The assignment is made; if the run-time value in
SAVINGS can not fit in CHECK, the results are
unpredictable.

BANK = CHECK; The assignment is made, if the run-time value in
CHECK can not fit in BANK, the results are
unpredictable.

1081-1 1:4-3

reree WM
!
,

Now look at floating point types, and how the type matching rules

Given the following declarations:

TYPE TAX'DUE F 20;

ITEM I'O'IRS TAX'DUE;
ITEM IRS'OWES'ME F 20;
ITEM FIGURE'TAX F 30;

I'O'IRS and IRS'OWES'ME have EQUIVALENT types - they are both
F 20. The following assignment-statements can be made:

I'O'IRS = IRS'OWES'ME;
IRS'OWES'ME = I'O'IRS;

The type of IRS'OWES'ME is IMPLICITLY CONVERTIBLE to the type of
FIGURE'TAX. The precision of FIGURE'TAX is greater than that of IRS'
OWES'ME. The following is a legal assignment:

FIGURE'TAX = IRS'OWES'ME;

The type of FIGURE'TAX is NOT implicitly convertible to the type of either
I'O'IRS or IRS'OWES'ME since the precision of FIGURE'TAX is greater

than that of either I'0'IRS or IRS'OWES'ME. The value of FIGURE'TAX
may not be assigned to I'O'IRS or IRS'OWES'ME.

Again, for an assignment-statement to be correct, the type of the
source value must be equivalent or implicitly convertible to the type of
the target variable.

Examples:
Given the following declarations:
TYPE SHORT'FLOAT F 5;
TYPE LONG'INT U 15;
ITEM NAME U 10;
ITEM DATE S 4;

1081-1 1:4-4

— g

ITEM TOTAL LONG'INT;
ITEM INDEX SHORT'FLOAT;
ITEM DIMENSION F 20;
The following are illegal assignment-statements:
TOTAL = DIMENSION; DIMENSION is a floating point type; TOTAL
is an integer type. There is no implicit

conversion defined from float to integer;
the assignment is incorrect.

INDEX = DIMENSION; DIMENSION is a long floating point type;
INDEX is a short floating point type. There
is no implicit conversion defined from long

float to short float; the assignment is incorrect.

DIMENSION = DATE; DATE is an integer type; DIMENSION is a
floating point type. There is no implicit
conversion defined from integer to float;
the assignment is incorrect.

The following are legal assignment-statements:

DIMENSION = INDEX; Implicit conversion is defined from short
float to long float.

NAME = DATE; Implicit conversion IS defined from any
integer type to any other integer type. (If
DATE = TOTAL; the run-time value of the source is out of

range of the target, the results of the assign-
TOTAL = DATE; ment are unpredictable.)

Explicit Conversion

An explicit conversion may be used to temporarily impose a tem-
plate of one type on a value of another type. If the source in an assign-
ment-statement is not equivalent or implicitly convertible to the type of
the target(s) receiving the assignment, a conversion-operator may be
used on the source value to make the types match.

For instance, given the following item-declarations:

ITEM DISTANCE S 10;

ITEM SPEED F 20;

The assignment of SPEED to DISTANCE:
DISTANCE = SPEED;

is not allowed; the type of SPEED (floating point) is not equivalent or
implicitly convertible to the type of DISTANCE (integer). A conversion-
operator may be used to temporarily place a 10-bit signed integer template
on the value of SPEED so the assignment may be made:

conversion-operator value
v ¥
DISTANCE = (*S 10%) (SPEED) ;

A conversion operator is of the form
conversion-operator (value)

A conversion-operator can be any of the following:

Operator Example
(* type-description *) (*U 5%
type-indicator U, s, F .
item~-type-name COUNTER ﬁ

(where TYPE COUNTER U 10;)

(* item-type~name *) (* COUNTER *)

NOTE: It is preferred programming practice to enclose
conversion operators in parentheses and asterisks. This
makes it more apparent to the reader that a conversion
/s taking place.

1081-1 1:4-6

et Wik i w v AT agen o i

Explicit Conversion - Examples

Declarations
TYPE COUNTER U 10;
TYPE SUMMIT F 10; !
ITEM PAGE S 5;
ITEM BOOK F 8;
(TEM NAME U 10;

VORI

ITEM MINUTES F 15;

ITEM TIME SUMMIT; i

Consider the following conversions:

1. (*U 10 *) (BOOK) U(BOOK) COUNTER(BOOK)

2. (* F 8 *) (MINUTES)

3. (* SUMMIT *) (PAGE) SUMMIT (PAGE) F(PAGE)

4, (* U 10 *) (PAGE)

5. SUMMIT (MINUTES) (* SUMMIT *) (MINUTES) i

Explanation !

. 1. The floating point value of BOOK is placed under three
integer templates. The first conversion-operator is the
parentheses-asterisk around the type-description. BQOOK
is considered as a 10-bit unsigned integer. The second
conversion-operator is a single letter type-indicator, U.
BOOK is considered as a single-word unsigned integer.
The third conversion operator is the item-type-name
COUNTER.BOOK is considered to be of type COUNTER,
a 10-bit unsigned integer.

2. MINUTES, a long floating point item is placed under a :
shorter floating point template. The parentheses-asterisk I
around the type-description is used as the conversion-
operator,

1081-1 1:4-7

3. The integer value of PAGE is placed under three floating
point templates. The first conversion-operator is the
parentheses-asterisk around the item-type-name. PAGE
is considered to be of type SUMMIT, a floating point type
with at least 10 bits of precision. The second conversion-
operator is simply the item-type-name. This explicit con-
version has exactly the same effect as the previous explicit
conversion. However, by using the parentheses-asterisk
form, it is asserted to the reader that an explicit conversion
is occurring. The third conversion-operator is a single

‘ letter type-indicator, F. PAGE is considered as a single

& precision floating point type.

: g, While it is true that any integer type is implicitly convertible
i to any other integer type, a piece of code may be clearer

by including an explicit conversion to assert to the reader
4 that the programmer is knowingly doing such a conversion,
The conversion-operator is the parentheses-asterisk around
the type-description. PAGE is considered as a 10-bit un-
signed integer.

5. MINUTES, a longer floating point item, is considered to be
of type SUMMIT, a shorter floating point type, in both
conversions. The first conversion-operator is item-type-
name SUMMIT; the second conversion-operator is the
parentheses-asterisk around the item-type-name.

i
The different forms of thé conversion-operator may be used on

1
the source in an assignment-statément to compiy with the type matching
rules of assignment.

Declarations
TYPE COUNTER U 10;
TYPE SUMMIT F 10;
ITEM PAGE S 5;
ITEM BOOK F 8;
ITEM NAME U 10;
ITEM MINUTES F 15;
ITEM TIME F 10;

1081-1 1:4-8

Incorrect Syntax
(The type of the source is not

Correct Syntax
(These are not the "only" correct

implicitly convertible to the answers.)

type of the target.)

1. NAME = BOOK; NAME = (* U 10 *) (BOOK);

2. BOOK = MINUTES; BOOK = (* F 8 *) (MINUTES); ‘
3. MINUTES = PAGE; MINUTES = (* F 10 *) (PAGE); ‘ ;
4. NAME = BOOK; NAME = U(BOOK); |

5. TIME = MINUTES; TIME = SUMMIT (MINUTES);

Explanation

1. Since a floating point type is not implicitly convertible to
an unsigned integer type, a conversion-operator must be
used, BOOK is considered as a 10-bit unsigned integer,
the type of NAME, and the assignment is made.

2. Since a longer floating point type is not implicitly conver-
tible to a shorter floating point type, a conversion-operator
must be used. MINUTES is considered as a shorter floating :
point type, the type of BOOK, and the assignment is made. .

3. Since a signed integer type is not implicitly convertible to
a floating point type, a conversion-operator must be used.
PAGE is considered as an F 10, which is then implicitly
converted to the type of MINUTES, F 15, and the assign-
ment is made. {

4, Since a floating point type is not implicitly convertible to
an unsigned integer type, a conversion-operator must be
used. BOOK is considered as a single-word unsigned
integer, which is then implicitly converted to the type of
NAME, U 10, and the assignment is made.

5. Since a longer floating point type is not implicitly conver-
tible to a shorter floating point type, a conversion-operator
must be used. MINUTES is considered to be of type
SUMMIT, an F 10, the type of TIME, and the assignment
is made,

1081-1 1:4-9

imeae i e e e e
- ;

The Round-or-Truncate Attribute

The round-or-truncate attribute may be used to further control
a conversion. It may be given following the single letter type-indicator

in a type-description:
U [, round-or-truncatel]
S [, round-or-truncate]
F [, round-or-truncate]

R indicates rounding, T indicates truncation toward minus infinity.

NOTE:

'} If a round-or-truncate attribute is omitted,
truncation occurs in a machine-dependent
manner, either toward zero or toward minus
infinity.

o The round-or-truncate attribute does not

follow the single letter type-indicator when
used by itself as a conversion-operator.

Examples of incorrect use:
S, T (BB)
F, R (BB)

Given the following declarations:
TYPE SHORTNUM S, T 5;
TYPE LENGTH F,R 10;
ITEM BB F 15;
£ The following conversions may be made correctly:
(*SHORTNUM*)(BB) The type of item BB will be converted
to S 5, with truncation of any fraction

occurring toward minus infinity.

(*S,T 5% (BB) !

1081-1 1:4-10

(*LENGTH*)(BB) The type of item BB will be converted
to F 10, with rounding.

(* F,R 10 *)(BB) |

Examples

(*S,R *) (3.5) ~ 4

(*S, T *) (3.5) 3

(*S *) (3.5) ~ 3 (if machine-dependent truncation is
either toward zero or toward minus
infinity)

(*S,R *) (-3.5) - -3

(*S, T *) (-3.5) ~ -4

(*s *) (-3.5) ~ -4 (if machine-dependent truncation is
toward minus infinity)

(*S *) (-3.5) ~ -3 (if machine-dependent truncation is
toward zero)

1081-1 1:4-11 SOFlecd

SECTION 5

FORMULAE

FORMULAE

A formula is either a single operand or a combination of operators
and operands. A formula may be parenthesized and the result of a
formula has a type. This section discusses integer and floating point

formulae.

Operator Precedence

The order in which operators and operands are combined is deter-
mined by the precedence of the operators. Operators of equal precedence
are evaluated from left to right, if the operation is not commutative (i.e.,
in addition, the order of evaluation is determined by the most efficient
code which can be generated since 5 + 3 is the same as 3 + 5). Expressions
within parentheses are evaluated first, from the inner most parenthesis
out.

A complete set of JOVIAL (J73) operators and their precedence is

as follows:

Precedence QOperator

6 @, subscripting, function calls
5 * %
3 ?) *, [, MOD
; _. 2 =, <>, <, >, <=, >=
; 1 NOT, AND, OR, EQV, XOR
0 assignment

NOTE: Many of these operators will be discussed in later
workbooks.: They are listed here to provide an overview.

i 1081-1 1:5-1 SOFlec4

e TSN

Integer Formulae _‘ i

An integer formula has integer operands (signed and/or unsigned j
of any length), and returns an integer result. Integer formulae may use
the following operators:

*%

Lok,

*, /, MOD

+ -

NOTES: The quotient in integer division is computed exactly
and truncated, in an implementation-dependent way, to an
integer result. The divisor (the second operand) must not
be zero. The MOD operator returns the integer remainder
of the integer division. For example:

7MOD 3+ 1

1 Seven dividec by three is two, remainder one; the result of
the MOD is the integer remainder. The divisor (the second

operand) must not be zero.

Integer exponentiation is done only if the second operand, the
exponent, is a non-negative integer known at compile-time. Since integer
exponentiation is done as repeated multiplication, the compiler must know

i ' how many times it is to do the multiplication.
Examples:
= Declarations
ITEM FIRST'U;

ITEM SECOND'S;
Formulae

FIRST + SECOND'

FIRST - SECOND'

FIRST * SECOND'

ORI

FIRST / SECOND'

FIRST ** 2

FIRST MOD SECOND'

FIRST + (SECOND' + FIRST')

The Type of an Integer Formula

The result of an integer operation has the type:
Sn

where n is one less than the multiple of BITSINWORD needed to hold the
larger operand.

In other words, if the operands of an integer formula are single-
word integers, the type of the result of an integer formula is a single-
word signed integer. If any operand is a double-word integer, the type
of the result of an integer-formula is a double-word signed integer.

Declarations
ITEM FIRST' S 10 = 14;
ITEM SECOND' U 30 = 10;

Type Type
Examples Result (BITSINWORD=16) (BITSINWORD=36)
FIRST' + SECOND' 24 S 31 S 35
FIRST' - SECOND' 4 S 31 S 35
FIRST' * SECOND' 140 S 31 S 35
FIRST' / SECOND' 1 S 3 S 35
FIRST' ** 2 196 S 15 S 35
FIRST' + FIRST' 28 S 15 S 35
FIRST' MOD SECOND' 4 S 31 S 35
FIRST' + (SECOND' 38 S 3 S 35

+ FIRST'")

1081-1 1:5-3 sa=rec”

If BITSINWORD is 16, FIRST' is allocated one word and SECOND'
is allocated two words. Any formula referencing SECOND' has a double-
word integer for one of its operands, so the type of the result for those
formulae are double-word signed integers. Any formula referencing
only FIRST' or using an integer literal that can be represented in only
a single-word has only single-word integer operands, so the type of the

result for those formulae are single-word signed integers.

If BITSINWORD is 36, both FIRST' and SECOND' are allocated one
word. The type of the result for any formula using them is a single-
word signed integer.

1081-1 1:5-4

OPERATOR PRECEDENCE - EXERCISES

Evaluate the following formulae and give the resulting value and type.

Declarations

TYPE LONGNUM U 20;

ITEM LENGTH LONGNUM = 20;
ITEM WIDTH LONGNUM = 10;
ITEM HEIGHT S 7 = 5;

Formulae Value

1.

LENGTH + WIDTH / HEIGHT
LENGTH + HEIGHT ** 2 / WIDTH
(LENGTH MOD WIDTH) * HEIGHT
WIDTH / HEIGHT ** 2

2 A% 3 Ak)

LENGTH * WIDTH / HEIGHT

Type (BITSINWORD=16)

ANSWERS

Evaluate the following formulae and give the resulting value and type.

Declarations

TYPE LONGNUM U 20;

ITEM LENGTH LONGNUM = 20;
ITEM WIDTH LONGNUM = 10;
ITEM HEIGHT S 7= 5;

Formulae Value Type (BITSINWORD=16)
1. LENGTH + WIDTH / HEIGHT 22 s 31
2. LENGTH + HEIGHT ** 2 / WIDTH 22 s 31
3. (LENGTH MOD WIDTH) * HEIGHT 0 s 31
5. WIDTH / HEIGHT ** 2 0 s 31
5. 2 %% 3 %% 2 64 s 15
t 6. LENGTH * WIDTH / HEIGHT 40 s 31
;'
X
|
.
=
x
|
|
1081-1 1:5-6

PIRRV S A R v, . . , . ' e .mm-.'tm\m
. - - e - - iGin e - A ~Sameti T2 ¥ o AT SR <

ITEM-DECLARATIONS - INTEGERS - SUMMARY EXERCISES

Assume BITSINWORD = 16.

1. Declare an integer item capable of taking on values

-37 through +20.

2, Declare an integer item always to be equal to your

present age.

3. Declare an integer item that will be used to measure

your weight.

4, Write a formula to cube your present age, subtract off
your weight, find the remainder when divided by the

item declared in# 1, What is the type of the result?

5. Declare an integer item and assign to it the value of the

formula in# A,

R B B o35 TV 530 N A O I Ml B o vy 43T BB S 0 0 4t 117 ity i«

ANSWERS

ITEM VALUE S;
ITEM VALUE S 6;

CONSTANT ITEM AG

EU=27;
CONSTANT ITEM AGE U 5 = 27;

ITEM WEIGHT U;
ITEM WEIGHT U 7;

(A%% ** 3 - WEIGHT) MOD VALUE
S

ITEM ANSWER S 15;

ANSWER = (AGE ** 3 - WEIGHT) MOD VALUE;

o Wt M ey £ - MO 2 ARk sy AT AR TR X 2

l FLOATING POINT FORMULAE

A floating point formula has floating point operands or is a floating
point exponentiation formula, and returns a floating point result. Floating
point formulae may use the following operators:

* %

o The divisor (the second operand) in division
must not be zero.

o .The MOD operator is undefined for floating
point formulae. '

o The precision attribute of a floating-formula
g is that of the formula's most precise operand.
i The operand of a floating-conversion is

‘ first computed according to the default rules,
and then converted to the specified floating
type.

o A floating-point exponentiation formula
handles all exponentiation that cannot be
done as integer exponentiation, The type of
the operands of floating exponentiation may
boih be floating point one integer and one
floating point, or both integer (where the
second operand - the exponent - is negative,
not known at compile time or both). Floating
point exponentiation is computed using
logarithms, so the first operand, the base of
the exponentiation formula, must not be
negative,

1081-1

Examples:
Declarations
ITEM FIRST' F;
ITEM SECOND' F;
Examples
FIRST' + SECOND'
FIRST' - SECOND'
* FIRST' * SECOND'
FIRST' / SECOND'
FIRST ' ** SECOND'

FIRST' * (SECOND' * FIRST')

The Type of a Floating Point Formula

The result of a floating point operation has the type:

Fp
where p is the precision of the larger operand.
Declarations
ITEM FIRST F 10 = 5.6;
ITEM SECOND F 15 = .8;

Examples Resuit Type
FIRST' + SECOND!' 4.8 F 15
= FIRST' - SECOND!' 6.4 F 15
FIRST' * SECOND' -4.48 F 15 '5‘
FIRST' / SECOND!' -7. F 15
FIRST' ** SECOND 56) F 15
FIRST' * (SECOND' * FIRST') ~25.088 F 15
FIRST' + FIRST' 1.2 F 10

1081-1 1:5-10

Any formula referencing SECOND' has the result type of F 15.
Any formula referencing only FIRST' has a result of F 10.

1081-1 1:5-11/1:5-12 SOFlecH

e ki R kb sk S S s AN gy ottty

OPERATOR PRECEDENCE - EXERCISES

Evaluate the following formulae and give the resulting value and type.

Declarations
TYPE SHORTNUM F 8;
ITEM LENGTH SHORTNUM = 3.6;
ITEM WIDTH SHORTNUM = -,02;
ITEM HEIGHT F 20 = 1.1;

Formulae - Value

1. LENGTH + HEIGHT / WIDTH
2. WIDTH + HEIGHT ** 2

3. HEIGHT - WIDTH + LENGTH
4. HEIGHT - (WIDTH + LENGTH)

1081-1

ANSWERS

Evaluate the following formulae and give the resulting value and type.

Declarations
TYPE SHORTNUM F 8;
ITEM LENGTH SHORTNUM = 3.6;
ITEM WIDTH SHORTNUM = -.02;
ITEM HEIGHT F 20 = 1.1;

Formulae - Value

1. LENGTH + HEIGHT / WIDTH -51.4
2. WIDTH + HEIGHT ** 2 1.19
3. HEIGHT - WIDTH + LENGTH 4.72

4. HEIGHT - {(WIDTH + LENGTH) -2.48

F 20
F 20
F 20
F 20

SECTION 6

SUMMARY f

SUMMARY

This first workbook covered the general organization of a program
and the specifics of two types of item-declarations.

The general format of JOVIAL (J73) program is:

START
PROGRAM name;
BEGIN
"declarations"
"executable statements"
"subroutines"
END
TERM
The START-TERM pair delimit the module (the compilation unit).
The program is given a name, and a BEGIN-END pair surround the
program-body. All data objects used in a program must be declared.
The executable statements define and control the algorithm of the complete
program. Portions of that program may be factored out and written as

small programs themselves in subroutines.

A general form of an item-declaration is:

type-description

item-type-name) [item-preset];

[CONSTANT] ITEM name(

Name must be at least two characters long, beginning with a letter
or a dollar sign, containing any number of letters, dollar signs, digits,
or primes (single quote characters).

Integer and floating point type-descriptions were discussed in
this section. The forms of those type-descriptions are:

U [integer-size] for non-negative whole number values

S [integer-size] for negative and non-negative whole number
values

F [precision] for values with fractional portions

If integer-size is not given, the compiler supplies a default,
" BITSINWORD-1 (a single word integer).

1081-1 1:6-1 SOFlecr

R = N, AR ed R uad o % o - oy
v il iR AR e o T

If precision is not given, the compiler supplies a default,
FLOATPRECISION (a single precision floating point).

An item-type-name may be declared to take on the attributes of
an explicit type-description. Once declared, it may be used in place of
the type-description in an item-declaration. The form of the item type-
declaration is:

TYPE item-type-name type-description;

All items have unknown initial value unless they are preset in the
item-declaration. Any literal value or any formula that is known at
compile-time may be used as an item-preset. The item-preset is given
following the type of the item, and it has the form:

= value

An item may be declared to be a constant by beginning the declara-
tion with the word CONSTANT and presetting the item to its constant
value. Constants are known at compile-time. They maintain their initial
value throughout the scope of the entire program.

The value of an item or a formula may be assigned to be the value
of another in an assignment-statement. The form is:

variable, ... = value;

The language further specifies that the type of the source value
must be equivalent or implicitly convertible to the type of each target
variable receiving an assignment. Equivalent types are those that the
compiler recognizes as identical; neither the compiler nor the programmer
has to provide any information to make the types match. Implicitly con-
vertible types are those that the compiler recognizes as being slightly
different, but it can automatically generate code to make the types match
without any further information from the programmer. Any of the numeric
types shown so far may be explicitly converted to any other numeric type.
An explicit conversion is supplied by the programmer to inform the
compiler about the type of a given formula.

1081-1 1:6-2

et

The type matching rules are summarized in the chart below using

the context of an assignment-statement.

Target =
equivalent
U U same integer-
size
S S same integer-
size
F F same precision

Source

implicitly
convertible

U, S any integer-
size

U, S any integer-
size

F smaller precision

The form of an explicit conversion is:

conversion-operator (formula)

The forms of the conversion-operator are:

(* type-description *)

type-indicator

item-type-name

(* item-type-name *)

The round-or-truncate attribute may be given in a type-descrip-

tion to further control conversion.

Integer and floating point types have a set of operators that they
may use in formulae. The result of any formuia has a type.
the type of the operands they may use, and the type of the result of the

formula are summarized in the chart below.

1081~-1

explicitly
convertible

U, S any integer-
size

U, S any integer-
size

F any precision

U, S any integer-
size

F any precision

The operators,

Formulae
Type of
Operator Meaning Operands Result Type
+ addition S, U S n, where n is the multiple of
BITSINWORD to hold the larger
operand minus 1
F F p, where p is the precision
of the larger operand
- subtraction S, U same as +
F same as +
* multiplication S, U same as +
F same as + |
/ division S, U same as +, result is truncated]
towards minus infinity ,
F same as +
*k exponentiation S, U same as +, exponent must be
non-negative, compile-time
known
F, S, U same as +, all exponentiation
not handled by integer
exponentiation
MOD modulo S, U same as +, returns integer
remainder of integer division
’

1081-1 1:6-4

ITEM-DECLARATIONS - INTEGER AND FLOATING POINT --
REVIEW EXERCISES

Declarations
TYPE MAXVAL U, R 14;
TYPE MINVAL F, T 9;
ITEM AA U 6;
ITEM BB S 10;
ITEM CC F 9;
ITEM DD F 25;
ITEM EE F 10;

ITEM FF U 14; 4

Are the following formulae and assignment-statements correct or incorrect?
If incorrect, use a conversion-operator to make the appropriate corrections.

Statement c ! Correct Statement

1. AA=BB /6 **4;
2. BB = EE MOD AA;
3. CC=0DD

4, EE = AA * CC - BB:

5. DD = EE ** 6.3 - CC / DD;
g - 6. FF = AA ** EE MOD DD:

1081-1 1:6-5 SOFlecH

ANSWERS

Deciarations
TYPE MAXVAL U, R 14;
TYPE MINVAL F, T 9;
ITEM AA U 6;
ITEM BB S 10;
ITEM CC F 9;
ITEM DD F 25;

ITEM EE F 10;
ITEM FF U 14;

Are the following formulae and assignment-statements correct or incorrect?
If incorrect, use a conversion-operator to make the appropriate corrections.

Statement c 1 Correct Statement
1. AA=BB / 6 ** 4, X (code may be erroneous)
2. BB = EE MOD AA; X BB = (*U*)(EE) MOD AA;
! 3. CC=DD X CC = (*F 9*)(DD);
§ 4. EE = AA * CC - BB; X EE = (*F 10*)(AA) * CC -
. (*F 10*)(BB);

DD = EE ** 6.3 - CC / DD;

FF = AA ** EE MOD DD; FF = (*U*)(AA** (EE)) MOD
(*V)

ey = =

THE JOVIAL (J73) WORKBOOK
VOLUME 2

ITEM-DECLARATIONS, PART 2

1081-1

April 1981

This material may be reproduced by
and for the US Government pursuant

to the copyright license under
Clause 7-104.9(a) (197" APR).

Submitted to

Department of the Air Force
Rome Air Development Center
1sts
Griffiss Air Force Base, NY 13441

Prepared by
SofTech, Inc.

460 Totten Pond Road
Waltham, MA 02154

©Copyright, SofTech, Inc., 1981

DAR

Bsua e o Lo e Bl
» . -~ —_—

e e e

PREFACE

This workbook is intended for use with Tape 2 of the JOVIAL (J73)
Video Course. Its purpose is to elaborate upon and reinforce concepts and

language rules introduced in the videotape.

Fixed point, bit, character and status item types are addressed in
this workbook. Each is discussed in terms of general syntax, type matching
and where applicable, formulaic expressions. The final pages are a
summary of information presented in this segment.

1081-1

TABLE OF CONTENTS

Section Page

SYNTAX 2:iv

1 DATA-DECLARATIONS: FIXED POINT ITEMS 2:1-1

§ 2 DATA-DECLARATIONS: BIT ITEMS 2:2-1
' 3 DATA-DECLARATIONS: CHARACTER ITEMS 2:3-1
4 DATA-DECLARATIONS: STATUS ITEMS 2:4-1

5 FORMULAE 2:5-1

6 SUMMARY 2:6-1

1081-1 2:iii SOFTecH

SYNTAX

The syntax conventions used in the JOVIAL (J73) Video Course

and workbook are as follows:

Syntax

[some-feature]

{one | other}
his-one
that-one
letter ...
(letter),...

tharone))

+ another

Meaning

Brackets indicate an
optional feature.

Braces with a vertical
bar indicate disjunction-
a choice between
alternatives.

Braces with each feature
on separate lines indicate
disjunction - a choice
between alternatives.

The sequence '...'
indicates one or more
repetitions of a feature.

The sequence "..."
following a comma (or a
colon) indicates one or
more repetitions of the
feature separated by
commas (or colons).

Syntax symbols may be
combined.

Sample Expansions

some~feature
OR
nothing

one
OR
other

this-one
OR
that-one

letter
letter letter
letter letter letter

{(letter)
(letter) (letter)
{letter) (letter) (letter)

this-one + (another)
that-one + (another)
+ (another)

SOFlecH

SECTION 1

DATA-DECLARATIONS:
FIXED POINT ITEMS

T R

DATA DECLARATIONS: FIXED POINT ITEMS

Fixed values are numbers with constant scale factors. They may be
used to represent physical quantities {primarily to save time and/or storage)
when the range of the value is narrow and predictable. For example, fixed
values may be used in a computation that runs on a computer for which
floating point hardware is not available or too slow.

The general syntax for item-declarations discussed in Workbook 1
holds true for fixed point items as well:

type-description)

[CONSTANT] ITEM (item_type-name

[item-preset];

ITEM ITEM is a JOVIAL (173) reserved word. It has a specific
meaning to the compiler, which restricts its use to
declarations. It cannot be used as a name.

A name is a sequence of letters, digits, dollar signs and
primes (single quote characters). It must begin with a
letter or a dollar sign, and be at least two characters long.
A name may be any length, though only the first 31
characters are examined for uniqueness within the program.
(Fewer than 31 characters may be examined for external
names. External names are discussed in Workbook 8).1

|type-descripti§r&] The type-description for fixed point items consist of
e letter A, a scale and an optional fraction preceeded by
a comma:

A scale [,fraction]

A scale must always be specified. [f a fraction is not
specified, the default size is the implementation parameter
FIXED PRECISION minus the number of bits allocated for
the scale.

The scale or fraction may be negative, but their sum must
be positive. There are three possibilities:

1gee list of JOVIAL (J73) reserved words given .in Workbook 1, p. 1:3-2.

Scale Positive and Fraction Positive

The scale gives the number of bits to the left of the binary
point and fraction gives the number of bits to the right of
the binary point.
Example:

ITEM SUBTOTAL A5, 2;
Interpretation:

SXXXXX.XX

(S represents the sign bit and X represents a bit of
allocated storage.)

Scale Negative and Fraction Positive

If the scale is negative, the binary point is assumed to be
that many bits to the left of the first non-sign bit of the
representation.
Example:

ITEM INCREMENT A -10, 14;
Interpretation:

S.0000000000X XXX

(The bits filled with zeros are not allocated.)

Scale Positive and Fraction Negative

If the fraction is negative, the binary point is assumed to
be that many bits to the right of the last bit of representa-
tion.
Example:

ITEM SIZE A6, 5;

Interpretation:

$X00000.

E A semi-colon terminates the declaration.

FIXED POINT ITEM-PRESETS

Optionally, a fixed point item can be preset. A real literal is used to
preset a fixed point item. A real literal is one of the following:

Decimal number 12.
6.097
’ Decimal number 436.123E5
y followed by an exponent 2.97E-7
: Integer followed 256E-8
[by an exponent 1EY4
3

NOTE: A real literal is interpreted as a fixed point value
when used in a fixed point context. (A real literal is said
to be of ambiguous type - i.e., If it appears in a floating
point context it is inferred to be a floating point type. If
it appears in a fixed context, it is inferred to be of fixed

- point type.)
As with all item~-declaration, the form of a preset is
= value;
. . CONSTANT FIXED POINT ITEMS &

The programmer may also declare a fixed point item to be CONSTANT,
which prevents its value from being changed during the execution of the
program. The form is:

type-description

item-type-name item-preset;

CONSTANT ITEM name (

The reserved word CONSTANT and an item preset are required in

addition to the constituents discussed above.

FIXED POINT ITEM-DECLARATIONS: EXAMPLES

ITEM MONEY A 20, 7; MONEY is declared to be a fixed point
item, allocated at least 20 bits for the
value of its scale, and seven for its

fraction.
CONSTANT ITEM RIGHT A5 = RIGHT is a constant item whose
.19E-7 value is .19E-7. The scale is at

least 5 bits, and the fraction defauits
to FIXEDPRECISION - the scale.

ITEM FIND'VAL A -2, 3; FIND'VAL is declared to be a fixed
point item allocated one bit of storage
(fraction - scale). The binary point
is assumed to be two places to the
left of the first bit of representation,
so the only values FIND'VAL can
_assume are zero or 1/8 (.125).

ITEM FOO A 4, -3- 15,; {tem FOO is a fixed point item whose
scale is 4 and whose binary point is
assumed to be three places to the
right of the first non-sign bit of
representation. Since only one bit
(the 4th significant bit) is allocated,
FOO can assume values of zero or
2* -1 (15). Here it is preset to 15.

1081-1 2:1-4

0.1 T R

o o 2t R A A=

p -—v—n:wu?- . Kt
[-

FIXED POINT TYPE-DECLARATIONS

As with integer and floating point items (discussed in Workbook 1),
a fixed point template may be declared to describe the type of one or more
items. The syntax of the item-type-declaration is as follows:

TYPE item-type-name type-description;

The item type-declaration associates the item type-name with the attributes
of the type-description.

NOTE: A type-dechiration has no item-preset because it
declares no data. A type-declaration creates a template. It
defines what data described using a particular type-name will
look like.

Once a type-name has been declared, it may then be used in any item
declaration in place of an explicit type-description, as shown in the syntax
below:

type-description e)
[CONSTANT] ITEM name item-type-name [item-preset];

For example:

TYPE RANGE A 5, 2; ‘
4
This type-declaration deciares an item type-name RANGE which may be used
to declare fixed point items of scale 5 and fractfon 2. RANGE may be

used as follows:
ITEM DISTANCE RANCE;

DISTANCE is declared to be a fixed point item with a scale of 5 and fraction
of 2. (The advaritages of using type names were discussed in Workbook 1,
po 3-11) .

1081-1 2:1-5

Fixed Point Type~Declarations -- Examples

Having made the following type-declarations:
TYPE CASH A 15, 7;
TYPE LG'NUM A 20, -10;

The following are correct uses of the type-names CASH and
an item-declaration:

ITEM SUM CASH;

ITEM MAXVAL LG'NUM = 2048;
CONSTANT ITEM TEST CASH = 16.374;
ITEM BASE LG'NUM;

1081-1 2:1-6

LG'NUM in

FIXED POINT ITEM-DECLARATIONS -- EXERCISES

Given:
TYPE LARGE A 10,7;

Determine if the following declarations are correct or incorrect. If they
are incorrect, make the appropriate corrections.

Declarations c L Corrections
1. ITEM ROLL A 10, 3;

2. ITEM SCRIPT A 6, -10;

3. CONSTANT ITEM REAL VAL A

4, CONSTANT ITEM XX A ,6 - 49;

5. ITEM MASK LARGE;

6. ITEM NUMBER LARGE A 20;

7. ITEM TIME LARGE -6E4;

1081-1 2:1

)
~

PP e ——————

i -

ANSWERS

Declaration Cc | Corrections
1. ITEM ROLL A 10, 3; X
2. ITEM SCRIPT A 6, -10; X ITEM SCRIPT A -6,
10;
(scale plus fraction must
be >0
3. CONSTANT ITEM REAL VAL A 7; X CONSTANT ITEM
REAL'VAL A 7 =
10.;
(no blank in name, need
preset)
4. CONSTANT ITEM XX A ,6 = 49; X CONSTANT ITEM
XX A 8,6 =49.;
(need scale, real preset)
5. ITEM MASK LARGE; X
: 6. ITEM NUMBER LARGE A 20; X ITEM NUMBER LARGE;
x (need only one type)
7. ITEM TIME LARGE -6E4; X ITEM TIME LARGE =
6E4;
{(need =)

N
-
]
-]

1081-1

FIXED POINT TYPE EQUIVALENCE AND IMPLICIT CONVERSION

In order for an assignment-statement to be legal, the type of the
source must be equivalent or implicitly convertible to the type of the 3

target variable(s).

Two fixed point types are equivalent if their scale attributes are
equal and their fraction attributes are equal.

A fixed point type will be implicitly converted to another fixed
point type if the scale and fraction attributes of the target type are both
at least as large as those of the source type.

Declarations
TYPE PAYMENT A 10, 7; 1
ITEM CASH PAYMENT;
ITEM MEASURE A 10, 7;
ITEM STATS A 10;
ITEM VISITS A 6, 2;

CASH and MEASURE have EQUIVALENT types - they are both A 10, 7.

If VISITS is the source in an assignment-statement and MEAS _RE is the
target in the assignment-statement, the type of VISITS is IMPLICITLY
CONVERTED to the type of MEASURE.

The type of STATS may or may not be either EQUIVALENT or
IMPLICITLY CONVERTIBLE to the type of CASH.

b A U PR R

1081-1 2:1-9/2:1-10 SOFlecH

G Nk £ s it B O i i - i AP

ASSIGNMENT-STATEMENT: REVIEW EXERCISES

Determine if the following assignment-statements are correct or incorrect.

Declarations ; %
TYPE SUM A 10, 6;
ITEM MAX SUM;
ITEM TOTAL A 5, 3;
ITEM MIN A 10, 6;
ITEM PLUS A 15;

Assignment-statements

1. MIN = TOTAL;
2. MIN, MAX = TOTAL;
3. TOTAL = PLUS;

4. PLUS = MAX;

5. PLUS, MAX, MIN = TOTAL; ?

1081-1 2:1-1 smreCH

ANSWERS

An assignment-statement assigns a source (formula) to a target

(variable).

The type of the source must be equivalent or implicitly convertible
to the type of the target.

An assignment-statement is either simple or multiple.

Declarations
TYPE SUM A 10, 6;
ITEM MAX SUM;
ITEM TOTAL A 5, 3;
ITEM MIN A 10, 6;
ITEM PLUS A 15;

Assignment-statements c I
1. MIN = TOTAL; X
2. MIN, MAX = TOTAL; X
3. TOTAL = PLUS; X (scale of
PLUS > scale
of TOTALO
4. PLUS = MAX; X

(if FIXED PRECISION >= 21)

5. PLUS, MAX, MIN = TOTAL X
(if FIXED PRECISION >= 18)

1081-1 2:1-12

e ciag oy o

FIXED POINT EXPLICIT CONVERSION

An explicit conversion may be used to temporarily impose a template
of one type on a value of another type. If the source in an assignment-
statement is not equivalent or implicitly convertible to the type of the
target(s) receiving the assignment, a conversion operator may be applied
to the source to make the types compatible.

An explicit conversion consists of a conversion-operator applied
to a parenthesized formula. An explicit conversion may have any of the
following forms:

(* type-description ¥)
type-indicator

> (formula)
item-ty pe-name

(* item~type-name *) J
Examples
(* A 10, 6 *)(COUNT)
CAST (COUNT)

(where TYPE CAST A 4, -2;)
(* A 7 *) (COUNT)

NOTES: Type-indicator is a single letter only. The type-
indicator A may not be used alone in an explicit conversion,
as a scale must be specified for every fixed point item.

ROUND-OR-TRUNCATE ATTRIBUTE

The round-or-truncate attribute specifies whether rounding or
truncation is to occur when a value is converted to a fixed point type.

If R is specified, rounding will occur. If T is specified, truncation

towards minus infinity will occur. If the attribute is omitted, truncation
in an implementation dependent manner will occur. (Rounding and trunca-
tion take place with respect to implemented precision.)

Examples
TYPE MINVAL A, T 5, 3;

TYPE MAXVAL A, R 10, 7; AN

1081-1 2:1-14

AD=A108 527 SOFTECH INC WALTHAM
THE JOVIAL (JT3) 'MKBOOK- VOLUME 1. INTESER AND FLOATING Po!N‘l’-ﬂC(U)

NOV 81 30502-7”-00.0
WCLASS!F!ED RADC=TR=81=333=VOL=1 N

Iﬁ MQ 25

i &2
s °
=z
2 s ns

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAUY OF STANDARDS 1963 A

EXPLICIT CONVERSION -- USES -- EXERCISES

Declarations
TYPE MAXVAL A, T 6,3;
TYPE MAXSUM U, T 10;
TYPE TOTAL F 30;
ITEM CANDY U 6;
ITEM COOKIES A 7,4;
ITEM CAKE F 20;
ITEM TART MAXVAL;
ITEM TASTE MAXSUM;
ITEM TANG TOTAL;

The following assignment-statements are incorrect. Apply the

appropriate conversion operator to the source so the assignment may be
made.

Incorrect Correction
1. TART = COOKIES;
2. CAKE = CANDY;
3. TANG = COOKIES;
4, TASTE = TANG;
5. CANDY = TART;
6. COOKIES = TASTE;

ANSWERS

Declarations
TYPE MAXVAL A, T 6, 3;
TYPE MAXSUM U, T 10;
TYPE TOTAL F 30;
ITEM CANDY U 6;
ITEM COOKIES A 7,4;
ITEM CAKE F 20;
ITEM TART MAXVAL;
ITEM TASTE MAXSUM;
ITEM TANG TOTAL;

Incorrect Correction

1. TART = COOKIES; TART = (*MAXVAL*) (COOKIES);
TART = (*A 5,2*) (COOKIES);

2. CAKE = CANDY; CAKE = (*F 20*) (CANDY); if
FLOATPRECISION <= 20 may use !
(*F*) i
3. TANG = COOKIES; TANG = (*TOTAL*) (COOKIES); j

TANG = (*F, R 30*) (COOKIES):

4, TASTE = TANG; TASTE = (*MAXSUM#*) (TANG);
TASTE = (*U*)(TANG);

5. CANDY = TART; CANDY = (*U*)(TART); CANDY =
(*U, T*)(TART);

6. COOKIES = TASTE; COOKIES = (*MAXVAL*)(TASTE);
COOKIES = (*A 7,4*)(TASTE);

SECTION 2

E DATA-DECLARATIONS:
- BIT ITEMS

DATA-DECLARATIONS: BIT ITEMS

Bit string values are sequences of binary values (bits). They may
be used for communication with "ON/OFF" devices or to control parts of
the program itseif. For example, a bit string may be used to represent
settings of switches on a control console.

Item~declarations for bit strings follow the general syntax for all

items:

[CONSTANT] ITEM ([YPerdescriotion } [item-preset:

ITEM ITEM is a JOVIAL (J73) reserved word. It has a specific
meaning to the compiler, which restricts its use to
declarations. It cannot be used as a name.

name A name is a sequence of letters, digits, doliar signs and
primes (single quote characters). It must begin with a
letter or a dollar sign, and be at least two characters
long. A name may be any length, though only the first
31 characters are examined for uniqueness within the
program. (Fewer than 31 characters may be examined for
external names. External names are discussed in
Workbook 8).1!

| type-description] The type-description for bit items consists of the

letter B followed by an optional BIT-SIZE. (Bit-size is
! an integer compile-time formula that indicates how many
bits are in the bitstring).

; E:l A semi-colon terminates the declaration,

BIT ITEM-PRESETS

3 A bit item may be optionally preset either by a bit literal or a Boolean
literal.
Bit Literals: A bit literal is composed of a string of beads. The form

_of a bit literal is:

bead-size B 'bead...'

1gee list of JOVIAL (J73) reserved words given in Workbook 1, p. 1:3-2.,

2:21 SOFlecH

' 1081-1

TUGRY P20 STOMR T £ L4 e, Py

e]

Bead-size is the number of bits used to represent each bead. Bead-size
may be 1 through 5, and must be large enough to represent each bead.

Examples Meaning

1B'01101! 1 bit to represent 0, 1 bit to represent 1, ...; total of 5 bits

3B'07! 3 bits to represent 0, 3 bits to represent 7; total of 6 bits
(000111 in binary)

4B'AQF' 4 bits to represent A, 4 bits to represent 0, 4 bits to
represent F, (where A and F are hexadecimal numerals);
total of 12 bits (101000001111 in binary)
Boolean Literals: A Boolean literal is a special form of a bit literal.
A Boolean literal is always one bit long, and is either TRUE or FALSE.
TRUE is represented as 1B'1'; FALSE is represented as 1B'0'. The form
of the preset is:

3 = value

Bit |tem-Presets: Examples

X

ITEM CODE B 6 = 1B'010100';
ITEM MASK B 16 = 4B'FFFF';
ITEM GAME B 12 = 3B'6411';

ITEM STAT B = FALSE;

= CONSTANT BIT ITEMS |

Bit items may be declared to have constant value. The form of a
constant item declaration is:

CONSTANT ITEM name (;‘g’e'f:_'t‘:,f:_"r‘\ggg") item-preset ;

- The JOVIAL (J73) reserved word CONSTANT and an item=-preset are
required.

1081-1 2:2-2

Bit |tem-Declarations: Examples

ITEM SWITCH B;

ITEM FLAG B = TRUE;

CONSTANT ITEM GUESS B7 =
1B'1100011’;

ITEM ONES B9 = 3B'777";

o

ITEM MASK BS;

ITEM CODE1 B;

ITEM SCAN B 16;

1081-1

2:2-3

SWITCH is declared to be a bit item
whose size is 1 bit by default.

FLAG is a bit item one bit long and
preset to 1B'1'.

GUESS is a constant bit item, seven
bits in length, whose value will
remain 1B'1100011' throughout the
execution of the program.

ONES is a bit item preset to 9 ones.

MASK is a bit item whose length is
8 bits.

CODE!1 is declared to be a bit item
whose length defaults to 1 bit.

SCAN is a bit item whose length is
16 bits.

SOFlecH

a2 C AT, | TELLEM W LRSS W 4R U S

BIT TYPE-DECLARATIONS

A bit type-declaration allows the programmer to specify a template
which can then be used to indicate type attributes in an item declaration.
The syntax of the item type-description is as follows:

TYPE item-type-name type-description;

The item type declaration associates the item type-name with the attributes
of the type-description.

NOTE: A type-declaration has no item-preset because it
declares no data. A type-declaration creates a template.

It defines what data described using a particular type-name
will look like.

Once a type-name has been declared, it may then be used in any item-
declaration in place of an explicit type-description, as shown in the syntax
below:

type-description

item-type-name) [item-preset] ;

[CONSTANT] ITEM name {

For example:
TYPE ALPHA B 16;

This. type-declaration declares an item type-name ALPHA that may be used
to declare bit items whose lengths are 16. ALPHA may be used as follows:

ITEM OMEGA ALPHA;
OMEGA is declared to be a bit item of length 16.

Bit Type-Declarations -- Examples

Having made the following type-deciarations:
TYPE SUBMASK B 10;
TYPE HOLES B 6;

1R T i e S LT i AR O i S W IO T 8 P 1 et T AN AL Y3 e o it ot e el S

The following are correct uses of the item-type-names SUBMASK and

HOLES in an item-declaration;
ITEM GAMES SUBMASK;
ITEM PRIME SUBMASK = 5B'98';

CONSTANT ITEM NOISE HOLES = 2B'301';
ITEM ESTIMATE HOLES;

1081-1 2:2-5/2:2-6 SOFlec4

Write complete declarations for the following:

1.

1081-1

BIT ITEM-DECLARATIONS -- EXERCISES

A type, CODE, to be 8 bits long and a type, MASK, to be 9 bits
long.

An item, READING, of type CODE, to have all bits preset to
zeros.

An item, WORD, of type MASK, to have each group of three bits
preset to 1, 2, and 3.

An item, TIMES, of type MASK, to have all bits preset to ones.

A constant item, LAYERS, to be twelve bits long, and always to
have its first 6 bits as 1's and its last 6 bits as 0's.

An item, FLAG, to be either TRUE or FALSE.

227 SOFfecH |

1081-1

ANSWERS

TYPE CODE B 8;
TYPE MASK B 9;

ITEM READING CODE = 1B'0';
ITEM READING CODE = 4B'00';

ITEM WORD MASK = 3B'123';
ITEM TIMES MASK = 3B'111';

CONSTANT ITEM LAYERS B 12
CONSTANT ITEM LAYERS B 12

B'7700';
B'333000';

N W

ITEM FLAG B 1;
ITEM FLAG B;

2:2-8

P F WV

BIT TYPE EQUIVALENCE AND IMPLICIT CONVERSION

For an assignment statement to be legal, the type of its source

must be equivalent or implicitly convertible to the type of the target

variable(s).
Two bit types are equivalent if their size attributes are equal.

A bit string will be implicitly converted to any bit string with a
different size attribute, with truncation on the left or padding with zeros
on the left.

Declarations
TYPE MAXSTRING B 8;
ITEM SHORT B 4;
ITEM LONG MAXSTRING;
ITEM LARGE B 8;
LARGE and LONG have EQUIVALENT types - they are both B 8.

If SHORT is the source in an assignment-statement and LONG is
the target in the assignment-statement, SHORT will be right-justified in
its field and padded on the left with zeros, (i.e., the type of SHORT is
IMPLICITLY CONVERTED to the type LONG).

If LONG is the source in an assignment-statement and SHORT is
the target in the assignment-statement, LONG will be truncated on the
left to be the same length as SHORT, (i.e., the type of LONG is
IMPLICITLY CONVERTED to the type of SHORT).

2:2-9/2:2-10

EXERCISES

Determine if the following declarations and statements are correct.
Make the appropriate corrections wherever necessary.

Exercises c I Corrections
1. TYPE LONG$ B 20

2. TYPE NO BITS B 3;

3. ITEM ALPHA B 7 = 1B'10';

4. |ITEM BETA B 2 = TRUE;

5. CONSTANT ITEM GAMMA NOBITS;

6. ALPHA = BETA;

7. GAMMA = BETA;

8. BETA = ALPHA OR GAMMA;

9. ALPHA,BETA = FALSE;

10. BETA = 6B'1};

1081-1 2:2-1 swem

e

ANSWERS

Exercises
=xereses

1.

2.

6'

8.

10.

TYPE LONGS$ B 20

TYPE NO BITS B 3;

ITEM ALPHA B 7 = 1B'1¢’;

ITEM BETA B 2 = TRUE;
CONSTANT ITEM GAMMA NOBITS;

ALPHA = BETA;
GAMMA = BETA;

BETA = ALPHA OR CAMMA ;
ALPHA,BETA = FALSE;
BETA = 6B'1';

10

X X

Corrections
TYPE LONG$ B 20;
TYPE NOBITS B 3:

CONSTANT ITEM
GAMMA NOBITS =
3B'0’;

(may not assign
to CONSTANT)

(bead-size too
large)

BIT TYPE EXPLICIT CONVERSION

A value of any type may be explicitly converted to a bit type.

oy

The forms of an explicit conversion are:

(* type-description *)
type-indicator
item-type-name

4 T, (* item-type-name *)

(formula)

When a value of any type is explicitly converted to type B n, the result

is the rightmost n bits of the value. If the target is longer than the
source, the value will be right-justified and padded on the left with zeros.
If the source is longer than the target, truncation will occur on the left.

Examples
(* B 12 *) (FLAGS)
5 B (FLAGS)
SHORTSTRING (FLAGS)
(where TYPE SHORTSTRING B 7;)

1081-1 2:2-13 SOFlecH

SECTION 3

DATA-DECLARATIONS:
CHARACTER ITEMS

DATA-DECLARATIONS: CHARACTER ITEMS

A character item is a fixed length string of characters. A
character item is declared using the customary syntax for item-declarations:

type-description el)
[CONSTANT] ITEM name item-type-name) [item-preset];

ITEM ITEM is a JOVIAL (J73) reserved word. It has a specific
meaning to the compiler, which restricts its use to
declarations. It cannot be used as a name.

A name is a sequence of letters, digits, dollar signs and
primes (single quote characters). It must begin with a

letter or a dollar sign, and be at ieast two characters
long. A name may be any length, though only the first
31 characters are examined for uniqueness within the
program. (Fewer than 31 characters may be examined for
external names. External names are discussed in
Workbook 8)?!

| type-description | A character type has a type-description of

C [character-size}

where character-size is an integer formula known at
compile time and less than or equal to the implementation
parameter MAXBYTES. If character-size is not specified,
the default size is 1.

E A semi-colon terminates the declaration.

CHARACTER ITEM-PRESETS

A character item declaration may contain an optional item preset.
The form of the preset is:

= value

where value is a character literal.

1gee list of JOVIAL (J73) reserved words given in Workbook 1, p. 1:3-2.

1081-1 2:3-1 smem

i b - " e c i . " (i o gy 3 i

A character literal is a sequence of characters enclosed in primes.
These characters can be letters, numbers or special characters. The form
is:

'‘character ...'
Every character, including blanks, counts as one character. To get a

prime (') to appear in a character string, it is doubled. However, it only
counts as one character (i.e., '1"m here').

CONSTANT CHARACTER ITEMS

A character item may be declared to be constant, in which case its
value cannot be altered during execution. The form is:

CONSTANT ITEM name (}{e‘::&f:_r;ggzn }item—preset;

The reserved word CONSTANT and an item-preset are required.

Character ltem-Declarations: Examples

ITEM NAME C 20; NAME is declared to be a character
item of 20 characters in length.

ITEM NAME2 C 7 = 'GANDALF'; NAME?2 is a character item of length
.7 with a preset value of GANDALF.

CONSTANT ITEM STRING C13 = STRING is a constant character item

'014ABX+*/"123 of length 13, whose value will always
be 014ABX+*/'123 during program
execution.

1081-1 2:3-2

1
i

CHARACTER TYPE-DECLARATIONS

A character type-declaration allows the programmer to specify a
template which can then be used to indicate type attributes in an item
declaration. The syntax of the item type-description is as follows:

TYPE item-type-name type-description;

The item type-declaration associates the item type-name with the attributes
of the type-description.

NOTE: A type-declaration has no item-preset because it
declares no data. A type-declaration creates a template.

It defines what data described using a particular type-name
will look like.

Once a type-name has been declared, it may then be used in any
item declaration in place of an explicit type-description, as shown in the
syntax below:

type-description

[CONSTANT] ITEM name item-type-name

:) [item-preset];

For example:
TYPE ALPHA C 10;

This type-declaration declares an item type-name ALPHA that may be used
to declare character strings whose lengths are 10. ALPHA may be used
as follows:

ITEM OMEGA ALPHA;

OMECGA is declared to be a character item of length 10.

" Ry To—

Having made the following type-declarations:
TYPE LONGCHAR C 20;
TYPE MEDCHAR C 15;

The following are correct uses of the item-type-names LONGCHAR and
MEDCHAR in an item dec!ar'ation:

CONSTANT ITEM SOC'SEC'NUM MEDCHAR = '391-56-0291';
ITEM LAST'NAME LONGCHAR = 'BEETHOVEN';
ITEM ADDRESS LONGCHAR;

1081-1 2:3-4

TR T S S, s kS ol ot AT AR e, Sk <

o

CHARACTER ITEM-DECLARATIONS -- EXERCISES

What is wrong with the following declarations:

1. CONSTANT ITEM ADDR HOME C 20 - 'WALTHAM'; (
2. ITEM MY .JOB C 10;
3. ITEM WEATHER = 'HOT AND SUNNY';

. TYPE SNOW C 3 = 'WET';
5. ITEM JOB C 12 = TEACHER;
6. CONSTANT ITEM BOOKS C 20 ='I'M OK, YOU'RE OK';

1081-1 2:3-5 sm'.em

1081-1

ANSWERS

What is wrong with the following declarations:
CONSTANT ITEM ADDR HOME C 20 = 'WALTHAM';
(blank not allowed in name)

ITEM MY.JOB C 10;

{. not allowed in name)

ITEM WEATHER = 'HOT AN SUNNY';

(need type - ITEM WEATHER C 20 = "HOT AND SUNNY';)
TYPE SNOW C 3 = "#&T!';

(no preset allowed o T/PE)

ITEM JOB C 12 = TEACHER;

(preset is chaacter literal, must be in single quotes)
CONSTANT ITEM BOOKS C 20 = 'I'M OK, YOU'RE OK!';

(need 2 single quotes inside character literal)

2:3-6

L3

Mt

e W

CHARACTER TYPE EQUIVALENCE AND IMPLICIT CONVERSION

For an assignment-statement to be legal, the type of the source
must be equivalent or implicitly convertible to the type of the target
variable(s).

Two character types are equivalent if their size attributes are
equal.

A character string will be implicitly converted to a character string
with a different size attribute with truncation on the right or padding with
blanks on the right.

Declarations
TYPE LAST'NAME C 20;
ITEM COMPOSER C 20;
ITEM AUTHOR LAST'NAME;
ITEM BOOK C 10;

AUTHOR and COMPOSER have EQUIVALENT types - they are both
C 20's.

If AUTHOR is the source of an assignment-statement and BOOK is
the target in the assignment-statement, AUTHOR will be truncated on the
right to be the same length as BOOK, (i.e., the type of AUTHOR is
IMPLICITLY CONVERTED to the type of BOOK).

If BOOK is the source of an assignment-statement and COMPOSER
is the target in the assignment-statement, BOOK will be padded on the
right with blanks, (i.e., the type of BOOK will be IMPLICITLY CONVERTED
to the type of COMPOSER).

CHARACTER TYPE EXPL'CIT CONVERSION

The forms of an explicit conversion are:

(* type-description *)
type-indicator
item-type-name

(* item-type-name *)

(formula)

When a character formula is explicitly converted to type C n, the result
is the leftmost n characters of the character formula. If the target is
longer than the source, the formula is padded on the right with blanks.
IT the source is longer than the target, the formula is truncated on the
right.

Examples
(* C 20 *) (NAME)
C (NAME)
LONGNAME (NAME)
(where TYPE LONGNAME C 30;)

Conversion of a bit string to a character type is legal only if the
size of the bit string is equal to the actual number of bits used to
represent the character type (excluding filler bits between bytes) which
may be found by using the BITSIZE function. The number of bits in the
character string, including filler bits, may be found using the REP
conversion.

1081-1 2:3-8

SECTION 4

DATA-DECLARATIONS:
STATUS ITEMS :

SOFlecH

DATA-DECLARATIONS: STATUS ITEMS

A status item is an item whose value range is a specified list of
symbolic names called status-constants. A status-constant is a symbolic
constant that has an ordering relation with the other status-constants in
the list. A status item provides a way to enumerate all possible values for
that item in a mnemonic way. For example, the IRS asks each person to
declare a filing status - single, married-filing jointly, married-filing
separately, etc. A programmer could declare a variable:

ITEM FILING U;

and somewhere make the notation that FILING = 1 means single, FILING =2
means married-filing jointly, FILING = 3 means married-filing separately,
etc.

Another way would be to declare a STATUS item, and list all

possible values for that item in a mnemonic way:

ITEM FILING STATUS (V(SINGL), V(MARYT),
V{ MAR'SEP), ...);

This STATUS item-declaration explicitly enumerates all the possible
values for the item FILING.

NOTE: The use of a name in a status constant does not
constitute a declaration of the name or a reference to a
declared name with the same spelling. For example, the
status-constant V(MONDAY) declares the name V(MONDAY)
not MONDAY. A status name and a declared name with the
same spelling can exist in the same scope without any
conflict.

A status item is declared using the now familiar general syntax
for item declarations:

type-description

[CONSTANT] ITEM name item-type-name

[item-preset];

1081-1 2:4-1 SOFlecH

ITEM ITEM is a JOVIAL (J73) reserved word. It has a specific
meaning to the compiler, which restricts its use to
declarations. It cannot be used as a name.

A name is a sequence of letters, digits, dollar signs and

primes (single quote characters). It must begin with a
letter or a dollar sign, and be at least two characters
long. A name may be any length, though only the first
31 characters are examined for uniqueness within the
program. (Fewer than 31 characters may be examined
for external names. External names are discussed in
Workbook 8). 1!

[_type-description] A default status type has a type description of the
ollowing form

STATUS (status-constant, ...)
and a status-constant has the form

name
V({Ietter })
reserved-word

The name must be unique for each constant.

Status—constants are represented by the compiler as the
values 0 » N-1, where N is the number of status-

constants in the list. (These are the default representations
of the status-constants.) However, the programmer treats
the status item as an item which may only take on the
enumerated values. The item is not treated as an integer.
Even though the representation of a status-constant is

an integer, an integer value may not be assigned to a

status item.

The size of a status item is the minimum number of bits
' necessary to hold the representation of the status-constant
with the largest representation.

El A semi-colon terminates the declaration.

STATUS ITEM-PRESETS

A status item declaration may optionally include a preset. The
form of the preset is

= value

1See list of JOVIAL (J73) reserved words given in Workbook 1, p. 1:3—2._ !

1081-1 2:4-2

where value is a status-constant from the list enumerated in the item-
declaration,

CONSTANT STATUS ITEMS

A status item may be declared to be constant, in which case its
value cannot be altered during execution. The form is

CONSTANT ITEM name (ittye;?ne_—tcileps:_r:‘gggn) item-preset ;

The reserved word CONSTANT and an item preset are required.

Status ltem Declarations: Examples

ITEM SEASON STATUS " Item SEASON is declared to be a
(V(SPRING), V(SUMMER), status item which can assume the
V(FALL), V(WINTER)) values V(SPRING), V(SUMMER),

V(FALL), V(WINTER). The size
of SEASON is 2 bits, since the
largest representation is binary
3 (11) which is required for

V(WINTER).
ITEM GRADES STATUS (V(A), GRADES is a status item which can
V(B), V(C), V(D), V(F)); assume the values V(A), V(B), V(C),

V(D), and V(F). The size of
grades is 3 bits, since binary 4 is
the largest representation in the

list.
ITEM WORDS STATUS (V(ITEM), WORDS is a status item which can
V(STATUS), V(BEGIN}) = assume the values V(ITEM),
V(BEGIN); V(STATUS), and V(BEGIN). WORDS

is preset to V(BEGIN]).

CONSTANT ITEM LIGHT STATUS LIGHT is a constant status item whose
(V(RED), V(YELLOW), value is V(RED).
V(GREEN)) = V(RED);

1081-1 2:4-3 saq.ec"" t

STATUS TYPE-DECLARATIONS

A status type-declaration allows the programmer to specify a
template which can then be used to indicate type attributes in an item~
declaration. The syntax of the item type description is as follows:

TYPE item-type-name type-description;

The item type-declaration associates the item type name with the attributes
of the type-description.

NOTE: A type-declaration has no item-preset because it
declares no data. A type-declaration creates a template.

It defines what data described using a particular type-name
will look like.

Once a type-name has been declared, it may then be used in any
item declaration in place of an explicit type-description, as shown in the
syntax below:

type-description

[CONSTANT] ITEM name item-typ» -name

} [item-preset};

For example:
TYPE ALPHA STATUS (V(READY), V(SET), V(GO), V(STOP));

This type-declaration declares an item type-name ALPHA that may be used
to declare a status item whose enumerated values are V(READY), V(SET),
V(GO), V(STOP). ALPHA may be used as follows:

ITEM OMEGA ALPHA;

Having made the following type-declarations:
TYPE LETTERS STATUS (V(X), V(Y), V(2));
TYPE COLORS STATUS (V(BLACK), V(WHITE)):

1081-1 ' 2:4-4

The following are correct uses of the item-type-names LETTERS and
COLORS in an item-declaration:

ITEM ENDALPHA LETTERS = V(Z);

ITEM SHADES COLORS;

CONSTANT ITEM VARX LETTERS = V(X);
ITEM MAGIC COLORS;

SPECIFIED STATUS LISTS

A specified status list is one in which the representational values
(status-index) associated with the status-constants (by the compiler)
can be specified by the programmer. The number of bits used to hold
these representations (size) may also be specified. Specified status lists
are commonly used to match up with hardware devices.

The general form of a status type-description is:
STATUS [size] (status~group, ...)

Each status~group has the form:

[status-index] status-constant

A status-constant is of the form:
name

V ({ letter)
reserved-word

Specified Status List -- Example

Given the following declaration:
TYPE GRADE STATUS 5(1V(A), 2V(B), 4Vv(C), V(D), 9V(F));

The size of 5 indicates that the largest representation for a status-

constant in this list may be only 5 bits long.

as 4.

The status-index of 4 on V(C) indicates that V(C) is represented

NOTES: If a size is not given, the minimum number of bits
necessary to represent the largest representation is used.

N+ B i O DU <. s i ~ ..

STATUS LISTS -- EXERCISES

Given the following declarations:
TYPE COLOR STATUS (V(RED), V(ORANGE), V(YELLOW));
TYPE NAME STATUS (V(SUE), 3V(MARY), V(FRANK), 9V(TOM));

TYPE DOGS STATUS 6(2V(RETRIEVER), 7V(SPANIEL),
3V(COLLIE)):

How many bits will be needed to represent the status-constants in:
COLOR
NAME
DOGS

What is the representation of:
V(RED)
x V(FRANK)

V(SPANIEL)
V(SUE)

1081-1 2:4-7 SOFlecH

AELD. LW o g sameeray A . —L:

e Brbn e ” atRes 5 LA et ML i st Lo

ANSWERS i

Given the following declarations:
TYPE COLOR STATUS (V(RED), V(ORANGE), V(YELLOW);
TYPE NAME STATUS (V(SUE), 3V(MARY), V(FRANK), 9V(TOM));

TYPE DOGS STATUS 6(2V(RETRIEVER), 7V(SPANIEL),
3V(COLLIE));

How many bits will be needed to represent the status-constants in:

COLOR 2 1
NAME b
DOGS 6

—————

What is the representation of:
V(RED) 0
3 V (FRANK) 4

V(SPANIEL) 7
V(SUE) 0

o - S L " o ol e » L N0 e AL ki w i A

STATUS TYPE EQUIVALENCE AND IMPLICIT CONVERSION

For an assignment-statement to be legal, the type of the source must
be equivalent or implicitly convertible to the type of the target variable(s).

Two status types are equivalent if they both have default repre-
sentation, if their size attributes are the same, and if both status-lists
contain the same status-constants in the same order; or, if both have
identical specified representations, their size attributes are the same, and
both status-lists contain the same status-constants.

A status type will be implicitly converted to a status type that
differs only in its size attribute, 1

Examples
Declarations

TYPE GRADES STATUS (V(A), V(B), V(C));

ITEM LETTERS STATUS (V(A), V(B), V(C)):

ITEM ABC GRADES;

ITEM ALPHA STATUS 5(V(A), V(B), V(C)):

ITEM SPEC'ALPHA STATUS 5(3V(A), 7V(B), 20V(C));

ABC and LETTERS have EQUIVALENT types - their status-lists
are identical.

X The type of LETTERS may be IMPLICITLY CONVERTED to the
type of ALPHA - the status-lists differ only in their size attributes.

The type of SPEC'ALPHA will not be IMPLICITLY CONVERTED to the l
type of ABC - the representations are different.

DISAMBIGUATING STATUS-CONSTANTS

Given the following declarations:
TYPE BED STATUS(V(SPRING), V(WATER), V(AIR)):

TYPE SEASON STATUS (V(WINTER), V(SPRING), V(SUMMER),
V(FALL));

1081-1 2:4-9 5a=rec|.|

ITEM SLEEP BED;

ITEM CLIMATE SEASON;

The status-constant V(SPRING) is a part of two type-declarations.

Used by itself, it is said to be ambiguous, and an explicit conversion will
have to be applied. V(SPRING) may be automatically disambiguated
{implicitly converted) to one type or another depending on the context.

A status-constant that belongs to more than one status-list is

automatically disambiguated in the following contexts, some of which will

be discussed in later workbooks:

] When it is the source value of an assignment-statement,
it takes the type of the target variable.

® When it is an actual parameter, it takes the type of the
corresponding formal parameter.

° When it is in a table subscript or used in a preset to
specify an index, it takes the type of the corresponding
dimension in that table's declaration.

) When it is a Joop initial-value, it takes the type of the
loop-control variable.

-0 When it is an item~preset or table-preset, it takes the
type of the item or table item being initialized.

) When it is an operand of a relational operator, it takes
the type of the other operand.

] When it is in a case-index-group, it takes the type of
the case-selector.

] When it is a lower-bound or upper-bound, it takes the
type of the cther bound.

Examples Type of V{SPRING)
SLEEP = V(SPRING); BED

IF CLIMATE < V(SPRING); SEASON

{(V(SPRING) : V(AIR)) BED(table dimension)

LB T T, M T N, T TR L S e T ST

STATUS TYPE EXPLICIT CONVERSION

The forms of an explicit conversion are:

(* type-description *)
type-indicator
item-type-name

(* item-type-name *)

(formula)

A status-conversion is used to explicitly convert a data object to
a status type. The conversion can be applied to bit or status data

objects only.

A bit string will be treated as representing the representational
value of the status type if the size of the bit string equals the BITSIZE
of the status type and the value of the bit string is within the range of
values of the status type. Otherwise the conversion is illegal.

A status-conversion may be used to assert the type of a status
object. This will be required when a status constant belongs to more
than one type and it is used in a context other than these enumerated
above under implicit conversions. Except for status objects whose types
differ only in their size attributes, a status object cannot be converted to
a different status type without first converting it to a bit string.

In the example on the previous page, V(SPRING) could be
explicitly disambiguated in either of the following manners:

(* BED *) (V(SPRING))
BED(V(SPRING))

SECTION 5

FORMULAE

FORMULAE
3
A formula is either a single operand or a combination of operators
and operands. A formula may be parenthesized and the result of a
formula has a type. This section discusses bit and fixed point formulae.
3 There are no character or status formulae defined in JOVIAL (J73).
OPERATOR PRECEDENCE: REVIEW
] The order in which operators and operands are combined is
: determined by the precedence of the operators. Operators of equal
] precedence are evaluated from left to right, if the operation is not com-
¢
‘ mutative (i.e., in addition, the order of evaluation is determined by the
; most efficient code which can be generated, since 5 + 3 is the same as
F 3+ 5). Expressions within parenthesis are evaluated first, from the
! innter most parenthesis out.
o}
i A complete list of JOVIAL (J73) operators and their precedence
E is as follows:
Precedence Operator
3 6 @, subscripting, function calls
5 * %k
' 4 *, /, MOD
i
| 3 -
2 =, <>, <, >, <=, >=
E | 1 NOT, AND, OR, EQV, XOR
1
: 0 assignment
]

SOFTecH

e T ST SRR T I L AN A e e,

FIXED POINT FORMULAE

A fixed point formula must have fixed point operands or one fixed
operand and one integer. A fixed point formula may use the following
operands:

+ - * |/

Modulus and exponentiation are undefined. For example, given these
declarations:

ITEM FIRST' A 10,6;
ITEM SECOND' A 10,6;
The following are valid formulae:
FIRST' + SECOND'
FIRST' - SECOND!
FIRST' * SECOND!'
FIRST' / SECOND!
FIRST' - (SECOND' - FIRST')

THE TYPE OF A FIXED POINT FORMULA

The type of the result of a fixed point formula depends on the
operator.

Operator Result Type

+ - Operands must have the same scale. Scale of the result
is the scale of the operands. Fraction of the result is
fraction of the operand with the larger fraction.

Declarations
ITEM FIRST A 10, 6;
ITEM SECOND A 10,2;

ITEM THIRD A 6,3;

1081-1 2:5-2

Formulae Result Type

FIRST - SECOND A 10,6
SECOND + SECOND A 10,2
SECOND + THIRD cannot do as written, could do

(* A6, 3*) (SECOND) + THIRD
or (SECOND) + (* A 10,2 *) (THIRD)

FIRST-(SECOND - FIRST) A 10,6

Operator Result Type

‘ * If one operand is an integer, the scale and the fraction
k of the result are the same as the scale and the fraction
of the fixed point operand.

1 If both operands are fixed, the scale and the fraction of
the result are the sum of the scale and the fraction, 1
respectively, of the operands. '

Declarations

ITEM FIRST A 10, 6;
ITEM SECOND A 8,-3;

ITEM THIRD S 10;

Formulae Result Type
FIRST * SECOND A 18,3

; . SECOND * THIRD A 8,-3

;- FIRST * FIRST A 20,12

NOTE: |If the precision (sum of the scale and fraction) of
the result exceeds MAXFIXEDPRECISION, or if the scale
does not lie within -127++127, an explicit conversion must

be applied to the result to yield a valid scale and precision.

Operator Result Type

/ If the divisor is an integer, the scale and the fraction of
the result are the same as the scale and the fraction of
the fixed point operand.

Otherwise, the result must be explicitly converted to a
specific scale and fraction.

Declarations
TYPE ANSWER A 8,7;
ITEM FIRST A 10,6;
ITEM SECOND A 8,-3;
ITEM THIRD S 10;

Formuiae Result Type

FIRST / THIRD A 10,6

SECOND / THIRD A 8,-3

THIRD / SECOND must be explicitly converted

(*A 12, 4 *) (THIRD / SECOND)

SECOND / FIRST must be explicitly converted
ANSWER (SECOND / FIRST)

R S S ¥ % .zm;’:.a.u-,mrxmm_j

EXERCISES

Remember: expressions within parenthesis are evaluated first,
** (exponentiation) second, * / MOD third, + - fourth.

Operators of the same precedence level are evaluated left to right.

Determine if the following formulae are correct. If they are, give

the resulting value and type.

Declarations

Formulae

1.

2‘

TYPE CHARGE A 6,4;

TYPE MASTER U 7;

ITEM BANANCE A 6,03 = 24.;
ITEM PROFITS A -2,7 = .125;
ITEM TIME CHARGCE = -1.1;
ITEM FACTOR MASTER = 4;

@]

1 Value Tzee
TIME + BALANCE
PROFITS + BALANCE + 17

PROFITS / BALANCE + 49.6

(FACTOR + 1) * PROFITS

FACTOR ** TIME

B ANl AT W

PR S P TGRSV AR IR 5 PP ST Pesa

Declarations

TYPE CHARGE A 6,4;
TYPE MASTER U 7;

ITEM BALANCE A 6,03 = 24.;
ITEM PROFITS A -2,7 = .125;
ITEM TIME CHARGE = -1.1;
ITEM FACTOR MASTER = 4;

Formulae

1.

2.

TIME + BALANCE
PROFITS + BALANCE + 17

PROFITS / BALANCE + 49.

(FACTOR + 1) * PROFITS
FACTOR ** TIME

ANSWERS

c \ Value Type
X 22.9 A 6,4
X (need real literal,
same scales)
6 X (need explicit conversion
in division)
X .625 A -2,7

X (** not allowed with ;
fixed) i

BIT FORMULAE

A bit formula is a formula whose operands are bit strings. If the
number of bits in the two operands is not equal, the smaller operand is
padded on the left with zero bits until they are the same size. The
operators (see Figure 5-1) used in a bit formula are:

NOT AND OR XOR EQV

Parentheses are necessary to indicate the order of evaluation if the formula
has more than one kind of logical operator. Otherwise, the formula will
be evaluated left to right.

Bit Formulae -- Examples

Declarations

ITEM MASK B 6 = 1B'001100';
ITEM CODE B 6 = 1B'011011';
Formulae Results

NOT MASK 1B8'110011'
MASK OR CODE 1B8'011111"
MASK XOR CODE 1B'010111'
MASK AND CODE 18'001000'
MASK EQV CODE 18'101000'

MASK AND (CODE XOR MASK) 1B8'000100'

sJqojeaadQ |ed1607 ¢ -§ 3anbiy4

L 0
0 |
*puedsado jo]
ay1soddo 3jnsay : LON 19| LON = 3|nsad
! l l 1 1 0
0 | 0 0 L L ?
w
l 0 0 { 0 1 o
'L Si)nsau ‘9s)3
1 = 3{Nsay 0 0 l 0 0 0 0 = }nsay
‘ jeanjuapt ‘awes ay}

spueaado yjoq j| :AD3 Y614 ADJI 13| = }|NSad Wb YOX 149] = }nsad spuedado yjoq J| HOX

l 1 i l l 1
0 l l 0 l 0
1 0 i l 0 0 0 = }NsSaYy ‘oudz
puesado adayilld j|
0 0 0 0 0 0
| = }ynsoy ‘| SI ‘L = ynsay ‘i1, iy
puesado Jayitd j| O 1Bl YO W) = }nsau WYbB1d ANV M9 = 3insad spuedado y1oqg §| ANV s
o

T T

SECTION- 6
SUMMARY

ITEM-DECLARATIONS

All data items must be declared before they may be used anywhere
in a program. The general form of an item-declaration is:

[CONSTANT] ITEM name(itg’e‘;‘f_‘t‘:,e::fr'\gf‘:‘e’") [item=preset] ;

The type-descriptions shown so far are:

U [integer-size]

S [integer-size]

F [precision]

A scale [, fraction]

B [bit-size]

C l[character-size]
name

STATUS [size] ([status~index] V ({letter’ }), oo)
reserved-word

Any literal value (any formula known at compile-time) may be used

as an item-preset. The form is:
ITEM name type-description item-preset ;

The type of an item-preset must be equivalent or implicitly convertible
to the type of the item. Otherwise, an explicit conversion operator must
be applied. The form of an item-preset is:

= value
An item may be declared to be constant. The form is:
CONSTANT ITEM name type-description item-preset ;
A programmer may make a type-declaration. The form is:

TYPE item-type-name type-description ;

:1
|
|

et et

The item-type-name may then be used in an item-declaration:

ITEM name item-type-name ;
A more general form of an item-declaration is:

[CONSTANT] ITEM name (;g’:::&eps:_r:gxn [item-preset] ;

Boant S o ahde A i
. - e

% 1081-1 2:6-2

FORMULAE

A formula is either a single operand or a combination of operators

and operands, possible parenthesized. An operator may be either prefix
(+, -, NOT) or infix (all operators).

Type of
Operands Operators Result Type

U, S +-* /[MOD S n, where n is one less than
the muitiple of BITSINWORD
to hold the larger operand;
operands may be of either type,
any size,

Only if the right operand is
non-negative, compile-time
known, result is S n (as above);
all other cases handled as
floating point.

F p, where p is the precision
of the larger operand; operands
may be of any precision.

Type of result and type of
operands depend on choice of
operator:

+, - Operands must have same
scale; result if A s [,f]
where f is larger fraction.

If one operand is fixed and
one is integer, result is
type of fixed operand:

As [, f].

If both operands are fixed,
result type is A s, +s;
[,f1 + fZ] .

If divident is fixed and
divisor is integer, result
type is type of fixed
operand.

. Type of

Operands Operators Result Type
: 4
F / Otherwise, result type must '
be explicitly converted.
: B NOT AND OR B n, where n is the size of the
y XOR EQV longer bit string; operands may
be of any size.
C none None.
{
STATUS none None.

1081-1 2:6-4

EXPLICIT CONVERSION

The form of an explicit conversion operator is:

(* type-description *)
type-indicator
item-type-name

(* item-type-name *)

(formula)

NOTE: The type-indicator A (fixed point) may not be used
alone as a conversion operator.

et e

Target
Type

1081-1

TYPE MATCHING, CONVERSION -- SUMMARY

Source Type

' N
Implicitly Explicitly
= Equivalent Convertible Convertible
U same size U, S any size U, S any size 1

S same size

F same
precision

B same size

U, S any size

F smaller
precision

B any size

2:6-6

F any precision

A any scale
[,fraction]

B smaller or same
BITSIZE

U, S any size
F any precision

A any scale
[,fraction]

B smaller or same
BITSIZE

U, S any size

L

F any precision

A any scale
[,fraction]

same BITSIZE
, S any size 3

any precision

> m Cc w

any scale
[,fraction]

B any size
C any size

STATUS any size

Sou ree Type

—

Equivalent

Implicitly
Convertible

Explicitly
Convertible

STATUS

A same scale
[,fraction]

C same size

STATUS
same repre-
sentation,
same size-
attributes,
same status-
constants

A smaller scale
[,smaller
fraction]

C any size

STATUS
same repre-
sentation
same status-
constants
different
size attributes

U, S any size
F any precision

A any scale
[,any fraction]

same BITSIZE
same BITSIZE

any size

o O WO W

same BITSIZE*

STATUS
to disambiguate

TYPE MATCHING, CONVERSION -- SUMMARY NOTES

The programmer has added control when using the round-or-

truncate attribute for numeric conversions.

Bit strings are padded on the left with zeros or truncated on the

left to obtain the appropriate length.

Character strings are padded on the right with blanks or truncated

on the right to obtain the appropriate length.

When assigning a large size integer into a smaller size integer,

the results are unpredictable.

The type-indicator A may not be used alone as a conversion operator,
since all fixed point declarations must specifiy a scale.

*If the value is represented in the status-list.

1081-1

2:6-7

If the programmer feels it is necessary to convert, for example, an
integer to a character string, this may be done with a two-step conversion:

Example
ITEM NUMBER U 32; |
ITEM NAME C 4;
NAME + (*C 4 *) ((*B 32 *) (NUMBER)):;)

1081-1 ' 2:6-8 -

ot s MR 2T O SIS 3147 e

ASSIGNMENT-STATEMENTS

An assignment-statement assigns a source (value) to one or more
targets (variables). The type of the source must be equivalent or implicitly
convertible to the type of the target.

The form an an assignment-statement is:

variable, ... = value;

1081-1 ‘ 2:6-9/2:6-10 SOFlecH

1.

ITEM-DECLARATIONS -- EXERCISES

Declare items for the following:

A type, COUNT, that can take on an integer value in
the range 0 through 30.

A type, NAME, that consists of eleven characters.

A number, PRICE, that has six binary places to the
left of the binary point and three binary places to the
right.

A condition, ALERT, that can be RED, YELLOW, or
GREEN.

A switch, SWITCH, that consists of 4 bits.

A counter, EPSILON, that can have integer values in
the range -1000 through 1000 and that has the initial
value 0.

A name, AUTHOR, to be of the type declared in #2.

An index, INDEX, to be of the type declared in #1.

ANSWERS

TYPE COUNT U 5;

TYPE COUNT U;

TYPE COUNT S;

TYPE NAME C 11;

ITEM PRICE A 6,3;

ITEM ALERT STATUS (V(RED), V(YELLOW), V(GREEN));
ITEM SWITCH B 4;

ITEM EPSILON S 10 = 0;
ITEM EPSILON S = 0;

ITEM AUTHOR NAME;
ITEM INDEX COUNT;

MACHINE LIMITATIONS

Every implementation has limits on the sizes and precisions allowable

for declared items. These limits are defined in terms of machine parameters.

The restrictions are:

for U [integer-size]

1 <= integer-size
for S [integer-size |

1 <= integer-size
for F [precision]

1 < = precision

for A scale [,fraction]

-127 <= scale
for B [bit-size]
1 < = bit-size
for C [character-size]
1 < = character-size

1081-1 2:6-13

MAXINTSIZE

MAXINTSIZE

MAXFLOATPRECISION

127

MAXBITS

MAXBYTES

s o ile dien o b

bt

VALUE LIMITATIONS

Given the size or precision of an item, a programmer may determine
the range of values that item may have. This is done by using machine
parameter functions. The value returned by any of these machine para-
meter functions is a constant and may be used anywhere a constant may

be used. The functions are:

for U [integer-size]

0 <= value <

for S [integer-size]

MININT (integer-size) <= value <=
for F [precision]
MINFLOAT (precision) <= value <=
or 0 <= value

or FLOATUNDERFLOW (precision) <= value < =

for A scale [fraction |

MINFIXED (scale, fraction)< = value < =

1081-1 2:6-14

MAXINT
(integer-size)

MAXINT
(integer-size)

FLOATUNDERFLOW
(precision)

MAXFLOAT
(precision)

MAXFIXED
{scale, fraction)

THE JOVIAL (J73) WORKBOOK
VOLUME 3
EXECUTABLE STATEMENTS

i 1081-1
April 1981

This material may be reproduced by
and for the US Government pursuant
to the copyright license under DAR
Clause 7-104.9(a) (1977 APR). !

Submitted to

Department of the Air Force
Rome Air Development Center
ISI1S
Griffiss Air Force Base, NY 13441

TR

T T —

Prepared by :

SofTech, Inc.
460 Totten Pond Road
Waitham, MA 02154

, ©copyright, SofTech, Inc., 1981

Nh A e

o Ta WL TR DRSS U T T T R T

PREFACE

Workbook 3 is intended for use with Tape 3 of the JOVIAL (J73)
Video Course. Its purpose is to elaborate upon and reinforce concepts
and language rules introduced in the videotape.

Simple and compound executable statements are discussed in this
workbook. Specifically addressed are assignment-statements, relational
expressions, if-statements, goto's, case-statements, while-loops, for-
loops and exit-statements. The final section is a summary of the informa-
tion presented in this segment.

Section
SYNTAX
1 ASSIGNMENT-STATEMENTS
2 CONDITIONAL STATEMENTS
3 CASE-STATEMENTS
4 LOOP-STATEMENTS

5 SUMMARY

TABLE OF CONTENTS

Page
3:iv

3:1-1
3:2-1
3:3-1
3:4-1

3:5-1

SYNTAX

The syntax conventions used in the JOVIAL (J73) Video Course

and workbook are as follows:

Syntax Meaning
] [some-feature] Brackets indicate an

optional feature.

! {one | other} Braces with a vertical

3 bar indicate disjunction-
a choice between
alternatives.

(this-one Braces with each feature

that-one on separate lines indicate
disjunction - a choice
between alternatives.

letter ... The sequence '...'
indicates one or more
repetitions of a feature.

(letter), ... The sequence "..."
following a comma (or a
colon) indicates one or
more repetitions of the
feature separated by
commas (or colons).

[(this-one}] Syntax symbols may be
that-one combined.
+ another

1081-1

Sample Expansions

some-feature ;
OR :
nothing

one i
OR |
other

this-one
OR
that-one

letter
letter letter
letter letter letter

(letter)
(letter) (letter)
(letter) (letter) (letter)

LAY

this-one + (another) §
that-one + (another) ‘
+ (another)

SECTION 1

ASSIGNMENT-STATEMENTS

ASSIGNMENT-STATEMENT

Statements are the means by which algorithms are specified. Thus
far, the declaration-statement and the assignment-statement have been
discussed. While the declaration-statement is a non-executable statement,
the assignment-statement specifies an action to be performed. Workbook 3
discusses a number of JOVIAL (J73) executable statements, beginning
with this brief review of the assignment-statement.

An assignment-statement causes the value to the right of the equal
sign (the source value) to be assigned to the variable(s) to the left of j
the equal sign (the target(s)). In performing the assignment, the source
is evaluated first. Then, the leftmost target variable is evaluated and the
value of the source is assigned. This process continues until all target

] variables have been assigned the source value.

NOTE: The type of the source must be equivalent or
implicitly convertible to the type of the target variable(s).

e - ol

TR WYY v
. .l

1081-1 3:1-1/3:1-2 SQFTECH

P

o e ——m—

” alzes L _ - " N] " il it o e " .A.

REVIEW EXERCISES

Declarati- s
ITEM AA S 7;
ITEM BB F 20;

ITEM CC C 4;

What must the type of XX be in each of the following assignments?
‘; Assignment-statements Type of XX
l AA = XX;

BB = XX;

CC = XX;
3 XX = BB;

XX,AA = -49;
! XX,BB = -6.2E7;
AA = XX + -79;

1081-1 3:1-3 SOFlecr

ANSWERS

Declarations
ITEM AA S 7;
ITEM BB F 20;
ITEM CC C 4;

What must the type of XX be in each of the following assignments?

Assignment-statements Type of XX 1
AA = XX; any S, U ﬂ
BB = XX: F 20 or smaller i
CC = XX; any C i
XX = BB; F 20 or greater

XX,AA = -49; any S, U

XX,BB = -6.2E7; any F

AA = XX + -79; any S, U

SECTION 2

CONDITIONAL STATEMENTS

THE IF-STATEMENT

The if-statement provides for conditional execution of a statement
depending upon the value of its Boolean formula. This value is often the
result of a relational expression and is, of course, either true or false.

The general form of the if-statement is
IF test;
true-alternative;
ELSE
false-alternative;

If the result of test is TRUE, the true-alternative is executed. The
false-alternative is ignored, and processing continues at the next state-

ment.

If the result of test is FALSE, the true-alternative is ignored and

the false-alternative is executed,
Processing continues at the next statement.
Example
IF SUM > LIMIT;
SUM

SUM/?2;
ELSE
SUM

SUM+t1;
ANSWER = SUM;

RELATIONAL EXPRESSIONS

While test can be set to TRUE or FALSE from the outset, this
value is more frequently obtained by the evaluation of a relational

expression.

1081-1 3:2-1

i
|
{
;

A relational expression is an expression with a relational operator. §

The relational operators are: !
= £> < >z < <= ‘

The operands of a relational expression must be equivalent or
implicitiy convertible.

The operands that may use all the above operators are:
S, U, F, A, C, or STATUS.

{ Bit types may only use the relational operators equal (=) and
4 not equals (<>).

The result of a relational expression is a Boolean value:
TRUE (1B'1') or FALSE (1B'0')

Examples

Given the following declarations:
TYPE MASK B 1;

TYPE NUM S 4;

TYPE LETTER STATUS (V(A), V(B), V(C));
TYPE SEQ'QF'B STATUS (V(B), V(BB), V(BBB)):
ITEM AA MASK = TRUE;

ITEM BB NUM = -6;

ITEM CC S 7 = 47;

ITEM DD LETTER = V(A);

ITEM EE B 1 = 1B"1";

ITEM FF SEQ'OF'B = V(BBB);

The following are valid relational expressions:

Expression Result

AA <> EE F

FF > V(B) T (V(B) is disambiguated)
BB <= CC T

V(B) = DD F (V(B) is disambiguated)

NESTED IF-STATEMENTS

If-statements may be nested. For example,

IF SUM > LIMIT;

IF READY;
SUM = SUM/2;
ELSE
IF CHARGED;
SUM = -SUM;
ELSE
SUM = SUM-9;
ELSE
SUM = SUM+1;

ANSWER = SUM;

When if-statements are nested, the else-clause, if present, is

associated with the innermost if that does not already have an else-

clause.

Example
IF MASK = CODE; IF FINAL = LIMIT; TOTAL = 100; ELSE
TOTAL = 0;

1081-1 3:2-3

SOFTecH

astr I

Er s e e o 2

Formatted to show the association of the else-clause:

IF MASK = CODE;
IF FINAL = LIMIT;
TOTAL

100;
ELSE
TOTAL = 0;

To associate a dangling else-clause with an if-clause other than the
default association, a null-statement (;) or a compound-statement
(discussed below) may be used. The null-statement fulfills the require-
ment for a statement, but does not perform any action.

Examples
IF MASK = CODE;
BEGIN (compound-statement)

IF FINAL = LIMIT;

TOTAL = 100;
END
ELSE
TOTAL = 0;
& IF MASK = CODE;
IF FINAL = LIMIT;
TOTAL = 100;
ELSE
| ; (null-statement)
ELSE
TOTAL = 0;

1081-1 3:2

m

it e e e

S . S tiieaghii
;)
MISSING ELSE-CLAUSES
An if-statement may be written without an else-clause. The form
is:
IF test ;
true-alternative ;
If the result of test is TRUE, the true-alternative is executed. ‘
Processing continues at the next statement.
|
If the result of test is FALSE, the true-alternative is ignored and
3 processing continues at the next statement.
Example
IF ALPHA <> BETA;
ALPHA = CAMMA;
BETA = GAMMA;
COMPOUND-STATEMENTS
The statements discussed thus far (assignment, if and null} are
simple-statements. A compound-statement is a2 sequence of simple-statements 1
grouped together to be treated as a simple-statement. The form is
BEGIN
x simple-statement ...
END
NOTE: A special form of a null-statement is:
BEGIN
END
1081-1 3:2-5 SOFlecH

Example
IF READY;
BEGIN
SUM = SUM/2;
READY = FALSE;
COUNT = COUNT + 1;
END
ELSE
BEGIN
SUM = -SUM;
READY = TRUE;
COUNT = COUNT -1;
END
LABELS

Labels may be attached to statements. A label is a name followed
by a colon. The form of a label is

name :

Any number of labels may be placed immediately before a simple-
statement as follows:

[label ...] simple-statement

Any number of labels may be placed before the BEGIN or END of a
compound-statement as follows:

{ label ... 1 BEGIN

simple-statement ..

[label ... END

Example

ONE : COUNT = COUNT + 1;
IF READY;
TWO : THREE: BEGIN
SUM = COUNT;

ANSWER = TRUE;
END

ELSE
COUNT = o; i

GOTO-STATEMENT

A goto-statement is often used to branch upon a particular condi-
tion, though it can be used independently of an if-statement. A goto-
statement transfers control to the statement labeled by the given statement

name. The form is

GCOTO statement-name;

Example
IF LIMIT/2 = 4;
, BEGIN
IF SUM = 0; ;
GOTO L'ONE;
’ §
END
ELSE
SUM = LIMIT;

L'ONE : ANSWER = SUM;

1081-1 3:2

7 SOFlecH

NOTE: Statement-name must be known within the scope in
which the goto appears. Statement-name must not be the
label of a statement within the controlled statement of a loop
unless the goto is also within the same controlled statement.
Statement-name must be the name of a statement that is in an
enclosing subroutine or in another module,

COMPILE-TIME-KNOWN TESTS

An if-statement with a compile-time-known test is resolved by the
compiler and reduced to a single alternative.

Example

CONSTANT ITEM READY B 1 = TRUE;

IF READY;

SUM = SUM/2;
ELSE

SUM = SUM-9;

ANSWER = SUM;

Because READY will always be TRUE in this example, the compiler
generates code only for the true-alternative of the if-statement.

SUM = SUM/2;

ANSWER = SUM;

NOTE: All unselected alternatives must still be syntactically
correct.

1081-1 3:2

f

SHORT-CIRCUITING

In some cases the value of a logical formula is known beture all the
parts of the formula are evaluated. When the value of the formula is
known, further evaluations are 'short-circuited'.

Example
ITEM SUM S;
ITEM LIMIT S;
ITEM TEST'BIT B 1;

IF TEST'BIT AND LIMIT > SUM ;

evaluated first,

if FALSE, no
further evaluation
done, the result

of the test

is FALSE $

if TRUE, ~—p evaluated second, !
result of this

relational expression
becomes the result of
if test

If both operands have a size of one bit and the value of the left

operand is such that the result of the operator can be determined, the 1

right operand will not be evaluated. (This rule works only with the
operators AND, OR.)

3:2-9/3:2-10

IF-STATEMENTS -- EXERCISES

What is "wrong" with the following if-statements? Make the

necessary corrections.

@

IF NAME = NUM;
COUNT = COUNT +1;
ELSE
NAME = NAME +1;
COUNT =0;

IF BOOKS + MAGS < 100;
IF LIBRARY ='CENTRAL';
COUNT = COUNT +1;
ELSE
BOOKS = 40;

ITEM PROFIT F;

ITEM EXPENSE A 10,4;

IF EXPENSE < PROFIT OR PROFIT > =100;
BALANCE = PROFIT -~ EXPENSE;
GOOD'YEAR = TRUE;

ELSE
GOOD'YEAR = FALSE;

s N e ki - il

ANSWERS

What is "wrong" with the following if-statements?

necessary corrections.

0)

IF NAME = NUM;

COUNT = COUNT +1;
ELSE

NAME = NAME +1;

COUNT =0;

IF BOOKS + MAGCS < 100;

iIF LIBRARY ='CENTRAL';

COUNT = COUNT +1;

BOOKS = uo0;

ITEM PROFIT F;
ITEM EXPENSE A 10,4;

IF EXPENSE < PROFIT OR PROFIT > = 100;

-
~a
-~

_.-> missing BEGIN
END

*
BALANCE = PROFIT - EXPENSE;

-

GOOD'YEAR = TRUE; &

ELSE
GOOD'YEAR = FALSE;

1081~1 3:2-12

- W S e e S G e G e WD T s e S e e

Make the

indent implies it's
associated with false-
alternative; treated
syntactically as
statement after
IF-ELSE

indent implies it's
associated with outer
IF; treated syntactically
as associated with inner
IF

SECTION 3
CASE-STATEMENTS

SOFlecH

CASE-STATEMENT

Whereas an if-statement provides for the conditional execution of
either of two statements, a case-statement provides for a choice of

executing one or more of a number of statements.

Case-statements eliminate many of the problems associated with
multiple nested |F-statements. For example, consider the following:

! IF NUMBER < 0 OR NUMBER > = 12;
COUNT = 0;
i ELSE i
5 1 IF NUMBER = 1;
COUNT = COUNT + 1;
ELSE
l IF NUMBER = 2 OR NUMBER = 3;
COUNT = COUNT + 2;
;J ELSE

IF (NUMBER > = 4 and NUMBER < - 7) OR
NUMBER = 11;

ki o 0 "
-~ -

COUNT = COUNT + 3;]

w ‘ ELSE H
i IF NUMBER = 8 OR NUBMER = 10;
COUNT = COUNT + &

DAt SR L e i AL,

ELSE
COUNT = COUNT + 5;

1081-1 3:3-1 SOFlecH

r——vw—w-
i

At first glance, the logic behind these nested ifs is a bit confusing.

Now look at the same actions specified by a case-statement:

CASE NUMBER;

BEGIN

(DEFAULT) : COUNT

(1) COUNT
(2,3) COUNT
(4:7,11) : COUNT
(8,10) COUNT
(9) : COUNT
END

CASE case-selector ;

BEGIN
0; [default-option |
COUNT + 1;
COUNT + 2;
COUNT + 3; case-option ...
COUNT + 4;
COUNT + 5;

END

The form of a simple
case-option is:

(case-index) : state-
ment

The syntax of the case-statement takes care of all the explicit

if tests internally.

In this case-statement, the case-selector is matched with a case-

index, one action is performed, and processing continues after the END

of the case-statement.

1081-1

The syntax of the case-statement is

CASE

case-selector ;
BEGIN

[default option]
case option ...

END

3:3-2

PN S

A case-option is of the form

(case-index) : statement

| case-selector| The case-selector is the variable name the programmer
wishes to test. The case-selector may be of type S, U, B,
C, or STATUS only. The types of all the case~indices
must be equivalent or implicitly convertible to the type of
the case-selector. If the case-selector does not match
any of its case-options the default option is selected. In
such a case, if no default option is given, the program is
invalid.

case-index | A case-index may be a single value, a pair of bounds or

any combination of the two. The form of a pair of bounds is

lower-bound : upper-bound

NOTE. A pair of bounds may be used only if the case-
index (and case-selector) are of type S, U, or STATUS
with default representations.

The case-index must be known at compile-time and be of
type S, U, B, C or STATUS only. The type of the case-
index must be equivalent or implicitly convertible to the
type of the case-selector.

A case selector matches a case-index if it is either equail to

the case-index or lies within the bounds of the case-
index. All case-indices must be distinct.

FALLTHRU OPTION

A FALLTHRU may be given at the end of a default-option or a
case-option. The form is:

(DEFAULT) : statement [FALLTHRU]

(case-index } : statement [FALLTHRU]

1081-1 3:3-3 5°F"ECH

An option is selected, its statement is executed, if a FALLTHRU is

encountered the following statement is executed, if a FALLTHRU is
encountered the following statement is executed, ... until no FALLTHRUs
are encountered. Processing then continues after the END of the case-

statement.

1081-1 3:3-4

b v Mt @l s vl B

FALLTHRU IN A CASE-STATEMENT -- EXERCISE

SALES, COUNT = 0;

e et o e e bty L e —————— v e s o

CASE PRICE;
BEGIN
(DEFAULT): SALES = 100;
('A','B"); BEGIN
SALES = 1;
COUNT = COUNT + 1;
END FALLTHRU
('CY: SALES = SALES + 3; FALLTHRU
(‘'D', 'E', 'F'): BEGIN
] SALES = SALES + 5;
COUNT = COUNT + 2;
:‘ END
! ('G") ; SALES = SALES + 7;
E CH', "1 BEGIN
SALES = SALES + 9;
COUNT = COUNT + 1;
END FALLTHRU 7
('J": SALES = SALES + 11;
END
L] 1
‘ Given the following initial values of PRICE find the value of SALES !
and COUNT at the end of the case-statement.
Value of PRICE Value of Sales Value of COUNT
‘ PRICE ="'B'
- PRICE ='C!'
PRICE = 'F'
PRICE ='GC!'
PRICE ='H'
PRICE =')!
PRICE = 'K!'
1081-1 3:3-5 SQF"ECH

RO 0 Vo R TANR MACIN e SOt St AU 1 K. 5 53500 AP 032 TN e, s 1 osis ot ol e T e B o bt e AT el e

" ANSWERS

SALES, COUNT = 0;

CASE PRICE;
BEGIN

(DEFAULT): SALES = 100;

(‘A','B"); BEGIN
SALES = 1;
COUNT = COUNT + 1;
END FALLTHRU

('C"): SALES = SALES + 3; FALLTHRU
('D', 'E', 'F'): BEGIN

SALES = SALES + 5;
COUNT = COUNT + 2;

END
('G"): SALES = SALES + 7;
('H', '1I"): BEGIN

SALES = SALES + 9;
COUNT = COUNT + 1;
END FALLTHRU
("J": SALES = SALES + 11;
END 3

Given the following initial values of PRICE find the value of SALES
and COUNT at the end of the case-statement.

Value of PRICE Value of Sales Value of COUNT
PRICE = 'B! 9 3
' PRICE ='C' 8 2
- PRICE = 'F' 5 2
“ PRICE = 'C! 7 0
PRICE = 'H' 20 1
PRICE ="')! 11 0
PRICE = 'K! 100 0

1081-1 3:3-6

i e b

COMPILE-TIME KNOWN CASE-STATEMENTS

If the case-selector in a case-statement is known at compile-time,
the case-statement is reduced to the statement identified by the matching
case-index and all statements to which the selected statement falls through.

Example

COANSTANT ITEM MONTH STATUS (V(JA), V(FE), V(MR), V(AP),
V(MY), VUUN), VUJY), V(AG), V(SP), V(0C), V(NV), V(DC)) =
V(FE):

CASE MONTH;
BEGIN
(V(JA) : V(MR)): - BEGIN
PROFITS = SALES * PRICE;
MAKE'REPORT = TRUE;
END FALLTHRU

(V(AP) : (V(JN)): PAYROLL = FALSE;

(VIJY) : V(SP)): BEGIN
PROFITS = SALES * NEW'PRICE;
MAKE'REPORT = TRUE;
END FALLTHRU

(V(OC) : V(DC)); PAYROLL = TRUE: “
END
The compiler generates code for the following:
PROFITS = SALES * PRICE;
MAKE'REPORT = TRUE;
PAYROLL = FALSE;

NOTE: All unselected alternatives must be syntactically
correct,

1081-1 3:3-7/3:3-8 SOFTQCH

parts:

Lamatd

CASE-STATEMENTS -- EXERCISES

The following case-statements are all incorrect. Mark the incorrect

CASE SPEED;
BEGIN
(1:10):
(2:4):

(12,25:100):

END

CASE INDEX;
BEGIN
(1:10):
(11:100):

(DEFAULT):

END

CASE ALPHA;
BEGIN

(2,4,6,8,10):
(1,3,5,7,9):

CASE RADIUS;

(DEFAULT):

(1:100):

ACTION1;
ACTION2;
ACTION3;

ACTIONT;
ACTION2;
ERROR9;

ACTION1 FALLTHRU;

ACTION2;

ACTION1;
ACTION2;

1081-1

parts:

ANSWERS

The 'following case-statements are all incorrect. Mark the incorrect

CASE SPEED;
BEGIN
(1:10):
(2:4):
(12,25:100) :
END

CASE INDEX;
BEGIN
(1:10):
(11:100):

(DEFAULT):

END

CASE ALPHA;
BEGIN

(2,4,6,8,10):
(1,3,5,7,9):

CASE RADIUS;

(DEFAULT):

(1:100):

ACTION?1;)
ACTION?; @-=--=-=cou-- _ case-index not
ACTION3; distinct
ACTION1;

ACTIONZ2;

ERRORY; ¢-~=--=-=v--- default should

appear first

ACTIONT FALLTHRU; 4 --- semi-colon should
appear before

ACTION2;
FALLTHRU
ACTIONT; €. Case-statement
ACTION2; _.-=""needs BEGIN,
& END
Y
>
3:3-10

e oAt Wbt o e

SECTION & 1

LOOP-STATEMENTS

R s

TR TRy T e £ ok ik

LOOP-STATEMENT

A loop statement repeatedly executes a controlled-statement. There
are two general types of loops in JOVIAL (J73), the while-loop and the
for-loop. These may be combined to give the programmer added control.

WHILE-LOOPS

One kind of loop-statement is a while-loop. A while-loop is a
simple~-statement. A while-loop is of the form

WHILE condition;
controlled-statement

Condition is a bit formula whose size is one bit. For instance, condition
could be the result of a relational expression is of type B1 - either TRUE
or FALSE.

Example
XX =2;
YY = 10;

WHILE XX + YY <> 0;
BEGIN
XX =XX - 1;
SUM = SUM + YY;
END

The flow of control of this WHILE loop can be diagrammed as

follows:

XX + YY <> 0;

FALSE J TRUE

XX = XX - 1;
SUM = SUM + YY;

L

The statements within the loop will continue to execute as long as
the sum of XX and YY is not equal to zero.

FOR-LOOPS

The other type of loop is the for-loop. The general form of a
for-loop is:

BY increment

FOR loop-control : initial value THEN next-value

) WHILE condition;

| Example
X FOR ALPHA : 1 BY 1 WHILE ALPHA < = 10;
| SUM = SUM + 1;

The flow of control for this loop can be diagrammed as follows:

1081-1

o el g b e .
R s = I b e

FOR

ALPHA =1 ;

=

ALPHA < =10 ;

FALSE | —lTRUE

SUM = SUM +1; {

Bl

ALPHA = ALPHA +1; !

As a further example, consider the following:
ANSWER = TRUE;
COUNT = 6;

FOR BETA: 0 BY 2 WHILE ANSWER = TRUE;

IF COUNT - BETA =0;

ANSWER = FALSE;

3:4

3 SOFlecH

COUNT = 6;

| FOR

BETA = 0;

l: WHILE

ANSWER = TRUE;

FALSE —l TRUE

IF COUNT - BETA = 0;
ANSWER = FALSE;

i

BETA = BETA +2;

[ANSWER = TRUE;

rloop—controlJThe loop control variable may be either a previously
declared variable or a single letter. At all times, the type
of the initial-value and the type of the increment or
next-value must be equivalent or implicitly convertible

to the type of loop-control.

There are special restrictions on a single letter toop control,
These are as follows:

° No item-declaration is needed; the single letter loop-
control is implicitly declared by its use.

° The single letter loop-control is not xnown outside
the scope of the loop.

1081-~1 3:4~-04

ik e e T L TR R TR Ra

° The type of a single letter loop-control is the type
of its initial-value.

. The initial value of a single letter loop-control
must not be anambiguous status-constant.

° The value of a single letter loop-control must not
be altered within the loop, (i.e., a single letter
loop-control must not be the target of an
assignment-statement.

Examples
This loop is incorrect
FOR | : 1 BY 1 WHILE < 10;
I = COUNT + TOTAL;

The single letter loop-control must not be the target in an

assignment.
This loop is correct:
FOR | : 1.BY 1 WHILE | < 10;
COUNT =1 + TOTAL;
The single letter loop-control may be used as a part of a formula.
This loop is incorrect:
FOR I : 1 BY 2 WHILE I < = 100;
BEGIN
SUM = 0;
FORJ : 1 BY 1 WHILE J < I;
SUM = SUM + J;
TOTAL = SUM / J;
END

The single letter loop-control (J) must not be used outside of the

loop it controls.

femm— g

The by-clause specifies an increment for the loop control

variable. This increment is added to the loop control
variable after each iteration of the loop. The increment
can be any numeric formula.

L_THEN-clause | The value of loop-control may be changed by repeated
assignment by use of a then-clause. The form is:

FOR loop-control : initial value THEN next-value
WHILE condition ;
controlied-statement
Example
FOR NUMBER: 2 THEN NUMBER**2 WHILE NUMBER < = 1000;
BEGIN
TWO'SQUARES = NUMBER;

END
The flow of control can be diagrammed as follows:
i '|
l FOR

NUMBER = 2;

WHILE
i]

NUMBER <= 1000;

FALSE TRUE
TWO'SQUARES=NUMBER;

NUMBER = NUMBER **2;

L, 1

1081-1 3:4

6

NESTED LOOP-STATEMENTS

A loop may be nested within other loop~statements.

Examples

FOR XX : 0 BY 1 WHILE XX < =10 AND (NOT TEST'BIT);

FOR YY: 10 BY -1 WHILE YY < =5 AND (NOT TEST'BIT);

FOR ZZ: 0 BY 4 WHILE ZZ < = 100 AND (NOT TEST'BIT)

o e

IF 5 =XX*3+YY*9 + ZZ*(-4);
TEST'BIT = TRUE;
The above example finds the first solution to the equation:
3X +9Y - 4Z =5

with allowable values of X being 0 tirough 10, allowable values of Y being
10 through 5, and allowable values of Z being multiples of 4 from 0 through
100.

EXIT STATEMENT

An exit~statement is used to effect an exit from a loop. The form

EXIT ;
Example
FOR INDEX: SOME'VALUE THEN INDEX /2 WHILF INDEX > 0;
BEGIN
IF INDEX MOD 5 = 0;
EXIT;
COUNT = COUNT + 1;

END

AD=A108 527 SOFTECH INC WALTHAM MA F/8 /9
THE JOVIAL (J73) WORKBOOK. VOLUME I. INTESER AND FLOATING POINT==ETC(U)
NOV 81 F30602=79=C=0040

UNCLASSIFIED RADC=TR=81=333-VOL~1 N

L
EEEEEREEN

L

2

FPIEERR

T
rer
e

m

I

22 it pes

——
———

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDARDS 1961 2

i el i ot B s WG ST R L AN I 1 L o

When the if-statement is evaluated and found to be TRUE, the
exit-statement is executed, COUNT = COUNT + 1 is not executed, and
processing continues after the END of the for-loop.

1081-1

SECTION 5
SUMMARY

SOFlecH

- . e e e A - S e I ” . A i+ b B P 8 sy A

EXECUTABLE STATEMENTS

An executable statement specifies an action to be performed.
The executable statements shown so far are:
assignment-statement
if-statement
goto-statement
case-statement
loop-statement
exit-statement
A null-statement has the form:
A compound-statement has the form:
BEGIN
simple-statement ...
END

An assignment-statement assigns a source (value) to one or more
K targets (variables). The form is:

target, ... =source ;
An exit-statement is used to exit from a loop. The form is:

EXIT ;

1081-1 3:5-1 5a=rec|.|

V- BTSSP T A NI T AP X -

B R T o T Sy PPN R Sor CITTPU 1~ O PO SR PR WEFT WY ok e

LABELS, GOTO-STATEMENT

A goto-statement transfers control to the statement labelled by the

given statement-name. The form of a label is:

name

The form of a goto-statement is:

GOTO statement-name;

NOTE: Control may not be sent to a label within a controlled-
statement from outside the loop. Labels within a loop are only
accessible from a goto-statement within that loop.

e ——

i+ RS T e SR PR S G SR 4 e A s i b B ity 12 e Bn S AR e ot o oo e pondi y s

IF-STATEMENTS |

The general form of an if-statement is:

IF test ;
true-alternative
[ELSE false-alternative]

Test is a Boolean value. For example: a relational expression,
any bit string, (it will be implicitly converted to a B 1, the right-most
bit), or a formula of any type explicitly converted to a bit string.

[f-statements may be nested; a dangling else-clause is associated
with the inner most if-statement without an else-clause.

If the value of test is known at compile~time, the compiler will only

1 : generate code for the selected alternative. ‘

The evaluation of a logical formula may be 'short-circuited': if the
value of the whole formula can be determined before the evaluation of all

the parts, evaluation will stop.

3 SOFTecH

1081-1 3:5

CASE-STATEMENTS '

A case-statement is a special form of an if-statement.
The general form of a case-statement is:
CASE case-selector ;

BEGIN

[default-option]

case-option ...

END 1

The case-selector is the variable name the programmer wishes to
test. The case-selector may be of type S, U, B, C, or STATUS. If the
case-selector does not match any of the case-options, the default-option
is selected. In such a case, if no default-option is given, the program is

invalid.
A default-option has the form:
(DEFAULT) : statement [FALLTHRU]
A case-option has the form:
(case-index) : statement [FALLTHRU]

The type of the case-index must be equivalent or implicitly
convertible to the type of the case-selector. A case-index may be a
value or a range of values or any combination of the two. A range may %
be given only if the case-selector is of type S, U, or STATUS. The case-
index must be known at compile-time and must be distinct from case-
option to case-option.

A FALLTHRU at the end of a default-option or a case-option allows
processing to fall through to the next option.

If the value of case-selector is known at compile-time, the compiler
will only generate code for the selected option, (options, should the
selected option have a FALLTHRU).

1081-1 3:5-4

LOOP-STATEMENTS

A loop-statement repeatedly executes a controlled-statement.
JOVIAL (J73) has two kinds of loop-statements:
while-loop
for-loop
A while-loop is of the form:
WHILE condition ;
controlled-statement

Condition is a Boolean value. For example: a relational expression,
any bit string, (it will be implicitly converted to a B 1, the right-most
bit), or a formula of any type explicitly converted to a bit string.

The flow of control can be diagrammed:

| WHILE

condition

FALSE | TRUE 4

4) execute
= controlled-statement i

FOR-LOOPS

-y The general form of a for-loop is:

BY increment)]

FOR loop-control : initial-value [(THEN next-value

[WHILE condition 1;

controlled-statement
or

1081-1 3:5-5 IECH 1

FOR loop-control : initial value [WHILE condition] K?:E'scr:::te—nvtalue)];

The flow of contro! can be diagrammed:

‘LFOR

loop-control = initial-value;

bm-"LE

test condition

FALSE w TRUE

execute controlled-statement

*

loop-control = (BY increment e)

THEN next-valu

Ly

The by-clause gives the increment to be added to the loop-control
each time the controlled-statement is executed. The type of increment
must be equivalent or implicitly convertible to the type of loop-control.
Increment must be a numeric formula.

The then-clause gives the new value to be assigned to the loop-
control each time the controlled-statement is executed. The type of next-
value must be equivalent or implicitly convertible to the type of loop-
control. Next-value may be a formula of any type.

Loop-control may be either a previously declared item or a single
letter.

1081-1 3:5

6

At all times, the type of increment or next-value must be equivalent

or implicitly convertible to the type of loop-controi. H
Special restrictions on single letter loop-control are: | J
o No item-declaration needed. ’
° Type of single letter loop-control is type of initial-value. j
° Value of single letter loop-control NOT known outside of {
loop.
° Value of single letter loop-control must NOT be altered

within controlled-statement.

B

1081-1 3:5

. SOFlecH

THE JOVIAL (J73) WORKBOOK

VOLUME 4

TABLE AND BLOCK
DECLARATIONS

1081-1
April 1981

This material may be reproduced by
and for the US Government pursuant
to the copyright license under DAR

Clause 7-1904.9(a) (1977 APR).

Submitted to

Department of the Air Force
Rome Air Development Center
ISIS
Griffiss Air Force Base, NY 13441

Prepared by
SofTech, Inc.

460 Totten Pond Road
Waitham, MA 02154

©Copyright, SofTech, Inc., 1981

PREFACE

Workbook 4 is intended for use with Tape 4 of the JOVIAL (J73)
Video Course. Its purpose is to elaborate upon and reinforce concepts
and language rules introduced in the videotape.

This workbook discusses in three sections non-dimensioned tables,
dimensioned tables and blocks. Specifically addressed topics in sections
one and two are presets, constant tables, typed tables and the like-option.
Section 2 also contains information regarding dimensions, subscripts and
type matching. Section 3 discusses blocks. Section 4 is a summary of
the material presented in this segment.

1081-1 SOFlecH

_ S s Al T, P SO T ST, TORL TN T O gy P S SR L O N

TABLE OF CONTENTS

Section Page
SYNTAX 4:iv

1 SIMPLE TABLES 4:1-1

2 DIMENSIONED TABLES 4:2-1

3 BLOCKS 4:3-1

4 SUMMARY I 41

1081-1 u:iii SOFlecH

SYNTAX

The syntax conventions used in the JOVIAL (J73) Video Course
and workbook are as follows:

Syntax

[some-feature]

{one | other}

his~-one

that-one

letter ...

(letter), ...

[this-one 1
that-one
+ another

Meaning

Brackets indicate an
optional feature.

Braces with a vertical
bar indicate disjunction-
a choice between
alternatives.

Braces with each feature
on separate lines indicate

disjunction - a choice
between alternatives.

The sequence '...'
indicates one or more
repetitions of a feature.

The sequence "..."
following a comma (or a
colon) indicates one or
more repetitions of the
feature separated by
commas (or colons).

Syntax symbols may be
combined.

Sample Expansions

some-feature
OR
nothing

one
OR
other

this-one
OR
that-one

letter
letter letter
letter letter letter

(letter)
(letter) (letter)
(letter) (letter) (letter)

this-one + (another)
that-one + {another)
+ (another)

SECTION 1

SIMPLE TABLES

g Gid At (o0 e em TR ATl 3 LUV R 10 T onA i

TABLES

Tables are collections of values gathered together to form a single
data object. They are used for the constructs called "records" and
"arrays" in other languages. A simple or non-dimensional table is like
a record. A simple table~declaration is of the form:

: TABLE name;

entry-description;

JOVIAL (J73) reserved word used to declare a data object
of type TABLE. It has a specific meaning to the compiler,
which restricts its use to declarations. It cannot be used
as a name.

A name is a sequence of letters, digits, dollar signs and
primes (single quote characters). It must begin with a
letter or a dollar sign, and be at least two characters long.
A name may be any length, though only the first 31
characters are examined for uniqueness within the program.
(Fewer than 31 characters may be examined for external
names, External names are discussed in Workbook 8).?

I_en try-description | An entry-description is the declaration of the scalar
components of a table. An entry-description may be simple
(one entry consisting of one item only) or compound (a
number of items in one entry).

., Examples:
1. TABLE ID;

ITEM NAME C 20;

Table ID is a simple {non-dimensioned) table with a
. simple entry-description (i.e., one item). Table ID
t o has one entry. That one entry is composed of one
item -- NAME.

1See list of JOVIAL (J73) reserved words given in Workbook 1, page 3-2.

4:1-1 SOFTecH

R At S AL s i i ~ammw .

- S LilaciSl T L T L YT T M MR S G e e o ey TIYTER e

Mgt ien o

L. el

TR

2. TABLE FULL'ID;
BEGIN
ITEM NAME C 20;
ITEM SOC'SEC'NO C 9;
ITEM AGE U 7;
ITEM GRAD'HS B:
END
Table FULL'ID is a simple (non-dimensioned) table with a
compound entry~description. FULL'ID has one entry. That

one entry is composed of four items - NAME, SOC'SEC'NO,
AGE, GRAD'HS.

TABLE~-PRESETS

A table-preset initializes items within an entry of a table (see
Figure 1-2),
A table-preset may be given as a part of the entry-description
or as part of the table-heading -- not both.
Example
TABLE FULL'ID;
BEGIN
ITEM NAME C 20 = 'MR.X';
ITEM SOC'SEC'NO C 9 = '111559999;"
ITEM AGE U 7 = 42;
ITEM GRAD'HS B = TRUE;
END
OR
TABLE FULL'ID = 'MR.X', '111559999', 42, TRUE;

BEGIN

ITEM NAME C 20;
ITEM SOC'SEC'NO C 9;
ITEM AGE U 7;

ITEM GRAD'HS B;

END

Both forms of the table-preset have the same effect. The type of the
preset values must be either equivalent or implicitly convertible to the
type of the items being preset.

An omitted value in a table-preset indicates that the corresponding

item is not initialized. ltems not preset have unknown value.
Example
TABLE FULL'ID = 'MR.X', , , TRUE;
BEGIN
ITEM NAME C 20;
ITEM SOC'SEC'NO C 9;
ITEM AGE U 7;
ITEM GRAD'HS B;
END

In this example, only the items NAME and GRAD'HS are preset.
SOC'SEC'NO and AGE have unknown value.

Example
TABLE FULL'ID = 'MR.X', '111559999'
BEGIN
ITEM NAME C 20;
ITEM SOC'SEC'NO C 9;
ITEM AGE U 7;
ITEM GRAD'HS B;

END

1081-1 4:1-3 SOFlecH

S T SRR

kil

s19sa.id 3jqel "1-Z a4nbig

*suondisosap-Aajue ayy jo Jaed e se uaalb usaq aaey

pINoD Bujpeay-ajqey 3yl jo jsed e se 343y uaalb syasaud-aiqey ayy

Saj0N
oL = 1 “ 9 =) | g= 1 H
LHOIFH! o _ LHOI3H _ LHOIIH T =1
tHiaIM | oL ! :E:s“ . ' E.a_;“
1 = =] 1 =
| }H1oN3 ! [HioNa ! tH1oNaY
‘(o1)e= 9T = L =

SNOISN3IwIa 3718Vl

SNOISN3IWIg 3718Vl

SNOISN3IWIa 3189VL

13INsaJ4 pinom sweabeip Gumojo) 3yl ‘s19sasd-ajqey HuIMo]0) Y UIALD

J .
| '

SNOISN3IWIa

LHOITH ' H1AIM | HLONI

anN3

‘N LHOI3H W3l
‘N HLAIM W3l
‘N HLON3T WLl

NID38

‘SNOISN3IWIa 378VL

:Aem Buimo)joy ay3} i pswwesbeip aq PIN0D J4e} 0S UMOYS SI|Ge) Y|

AT

B

" e
oTTamAan

4:1-4

1081-1

Shaas Vb ia s asalocs o -y

R, 2

DS N a4

A e St e

In this example, only the items NAME and SOC'SEC'NO are preset. AGE
and GRAD'HS have unknown value.

A repetition-count may be used in a table-preset to repeat a value
or a set of values. The form is:

repetition (preset-option, ...}

A preset-option is of the form:

value
repetition (preset-option, ...))
Given the following table-declarations:

TABLE SALES;

BEGIN

ITEM SUN U;

ITEM MON U;

ITEM TUE U;

ITEM WED U;
ITEM THU U:
ITEM FRI U;
ITEM SAT U;
END
The following table-presets have the following effects:
TABLE SALES = 7 (0); All items are preset to 0.
TABLE SALES =1, 3 (0,1); SUN is preset to 1, MON to 9, TUE ;
to 1, WED to 0, THU to 1, FRI to 0,
SAT to 1.
TABLE SALES = 2(2(5),3); SUN is preset to 5, MON to 5, TUE

to 3, WED to 5, THU to 5, FRI to 3,
SAT is not preset.

1081-1 4:1-5 SOFlecH

i 2

NOTE: While nested repetition-counts are allowed in the ;
language, it is not recommended that they be used because i

or their drain on memory.

CONSTANT TABLES

A table may be deciared to be constant, in which case the value(s)
of the entry description may not be altered during program execution.
The form is:

CONSTANT TABLE name [table-preset];
entry-description [table-preset];

The constant-table preset may be given either as part of the table-heading
or as part of the entry-description (not both).

Example
CONSTANT TABLE LOOK'UP = 10.0, 100.0, 1000.0, .1;
BEGIN
ITEM NUMBER F; i
ITEM SQR F; "
ITEM CUBE F;

ITEM RECIP F;

END

All items within a constant table do n t need to be preset, though
these items will have constant unknown value during execution.

1081-1 4:1-6

hahahe L0 20

TABLE TYPE-DECLARATIONS

A table type-declaration can be used to declare a descriptive
template for tables which can be referred to by name. This table-type-
name may then be used in any number of table-declarations to define a
table with the attributes of that typed table. The form of a simple table
type-declaration is:

TYPE table-type-name TABLE;

entry description;

NOTE: Since a type-dzclaration declares no data it cannot
have a preset.

Once a table type-declaration has been made, the table type-name
associated with that template may be used in a table declaration:

[CONSTANT] TABLE name table-type-name [preset];
For example, given the following table type-~declaration:
TYPE MAP TABLE;

BEGIN

ITEM LONGITUDE F 20;

ITEM LATITUDE S 15;

END

The following table-declarations show correct uses of the table
type-name MAP:

TABLE USA MAP ;

TABLE GLOBE MAP;

Y

hitd

In this case, the table USA "looks like" type MAP; it has one entry with
two items, LONGITUDE of type F 20, and LATITUDE of type S 15. The
table GLOBE "looks like" MAP; it, too, has one entry with two items,
LONGITUDE of type F 20, and LATITUDE of type S 15.

NOTE: Pointers must be used to reference items in tables
declared using a table-type-name. Pointers will be discussed
in Workbook 5.

LIKE-OPTION

A table type-declairation may include a like-option. A like-option
allows the programmer to create several variable length records from a

common beginning. The form is:
TYPE table-type-name TABLE LIKE table-type-name;
entry description;
Examples:
TYPE SHORT'ID TABLE;
BEGIN
ITEM NAME C 20;
ITEM ADDRESS C 50;
END
TYPE A'MED'ID TABLE LIKE SHORT'ID;
BEGIN
ITEM PHONE C 10;
ITEM MARRIED B;
END

1081-1 4:1-8

P S s

_—

b e

TYPE B'MED'ID TABLE LIKE SHORT'ID;

BEGIN

ITEM BIRTH C 6;

ITEM EDUC STATUS (V(GRADE), V(HS), V(BACH)):
ITEM EMPLOYED B;

END

These declarations could be diagrammed as follows:

SHORT'ID
-
NAME ! ADDRESS
A'MED'ID
LB T L]
NAME | ADDRESS | PHONE ! MARRIED
]
' l L
B'MED'ID
—[H H H
NAME |ADDRESS | BIRTH [EDUC | EMPLOYED
H ! { '

Once these templates have been established, any number of tables
could be declared using the type-name associated with a given template —-

TABLE REGISTER SHORT'ID;
TABLE FONE'BOOK A'MED'ID;
TABLE SURVEY B'MED'ID;

(See Section 2, page 28 for a discussion of type equivalence and w/c

conversion.)

1081/1 4:1-9 smr.em

e M S .. S L EERE . . - e Toeerm o TR T Y PP A mrwmmgmm«xm

3

a

UNNAMED ENTRY-DESCRIPTION

One additionaf form of the table-declaration is allowed, an unnamed
entry-description. The form is:

TABLE table-name [table-attributes] type-description ;
The following table-declaration is an example:

TABLE SCORE (1000) U 5;

The table SCORE contains 1001 unnamed entries. These entries may be
referenced as SCORE(0), SCORE(1), and so on. The type of these
references is table and so their use is limited.

SECTION 2

DIMENSIONED TABLES

DIMENSIONED TABLES

A JOVIAL (J73) table may have up to seven dimensions. The
dimension list appears as part of the table-attributes. The form is

(dimension, ...)

A dimension may have a lower and upper-bound or just an upper-

bound.

If the lower bound is not specified it defaults to zero (where the

upper-bound is an integer S or U) or to the first status-constant of a
default status list (where the upper-bound is a status-constant]}.

lower-bound must be less than or equal to the upper-bound.

The
Lower and

upper-bounds must be equivalent or implicitly convertible to each other.

Consider the following examples:

DIMENSIONS
TABLE DIMENSIONS (1:5); | u
BEGIN LENGTH(1) | First
ITEM LENGTH U; | WIDTH(1) } Entry
ITEM WIDTH U; (
ITEM HEIGHT U; ' {HEIGHT (1)
END LENGTH(2) | |
| Second
:WIDTH(Z) l Entry
| [HEIGHT (2)
l R
LENGTH(3) |
| [Third
| WIDTH(3) | Entry
" HEIGHT(3)
LENGTH(4) | |
|
| WIDTH(4) | Ez:':;h
I IHEIGHT (4)
LENGTH(S) | j' Fifth
| WIDTH(5) I Entry
! IHEIGHT(5)

Table DIMENSIONS has one dimension which ranges from 1 to 5. These
are five entries in DIMENSIONS. Each entry contains a LENGTH, WIDTH

and HEIGHT.

1081-1

4.2-1

SOFlecH

T B e

TABLE DIMENSIONS (2 : 5, 1);
BEGIN
ITEM LENGTH U;
ITEM WIDTH U;
ITEM HEIGHT U;

END
DIMENSIONS

| |

LENGTH (2,0) | WIDTH (2,0) lHEIGHT (2,0)
—t

LENGTH (2,1) | WIDTH (2,1) | HEIGHT (2,1)
|

LENGTH (3,0) I WIDTH (3,0) ;HEIGHT (3,0)
' I

LENGTH (3,1) | WIDTH (3,1) llelcm'r (3.1)
! |

LENGTH (4,00 | WIDTH (4,00 | HEIGHT (4,0)
. ! }

LENGTH (4,1) | WIDTH (4,1) :HEIGHT (4,1)
| 4

LENGTH (5,0) | WIDTH (5,0) | HEIGHT (5, 0)
| |

LENGTH (5,1) } WIDTH (5,1) :HEIGHT (5.1)
L i

items in each entry.

ENTRY

ENTRY

ENTRY

ENTRY

ENTRY

ENTRY

ENTRY

ENTRY

(2,0)

(2,1)

(3,0)

(3,1)

(4,0)

(4,1)

(5.

(5.1)

The table DIMENSIONS now has two dimensions, eight entries, three

TYPE GRADE STATUS (V(A), CONDITION

V(B), V(C), V(D), V(F}).
TABLE CONDITION (V(A) : V(F), NAME (V(A), 1) |AGE (V(A), 1)
1 :85);

BEGIN NAME (V(A), 2) | AGE (V(A), 2)
ITEM NAME C 20;
:;L%M AGE U; NAME (V(A), 3) | AGE (V(A), 3)

NAME (V(A), 4) | AGE (V(A), 4)

NAME (V(A), 5) | AGE (V(A), 5)

NAME (V(B), 1) | AGE (V(B), 1)

NAME (V(B), 5) { AGE (V(B), 5)

NAME (V(C), 1) | AGE (V(C), 1)

NAME (V(F), 5) | AGE (V(F). 5)

Table CONDITION has two dimensions. The first ranges from V(A} to

' V(F), the second from 1 to 5. There are twenty-five entries in
CONDITION, each of which constains a NAME and AGE. (Remember that
when a default STATUS type is declared, each status constant in the
symbol table is associated with an integer value. This is done positionally

from zero.)

1081-1 4:2-3/4:2-4 5“'2:'-'

r onanl S ghebly o ol =
L

L T

ey

it it oo s R s

DIMENSIONS -~ EXERCISES

The following table-declarations are incorrect.

corrections.

Incorrect Table-Declarations

1.

TABLE HITS (-5 : -10);
ITEM VALUE U;

TABLE SCORES (3 : 5,
1.2 : 4);
ITEM VALUE U;

TYPE LAMP STATUS (V(OFF),
V(WEAK])}, V(ON)): TABLE
HOUSES (V(OFF) : 7, -7, :
0, 3);

ITEM VALUE U;

TABLE WORK (1 : 4, 1: 5, 1
4, 1:3,2,48,2,1:2);
ITEM VALUE U

TABLE NAMES (V(END), 7,
-2);
ITEM VALUE U;

TABLE MALES (7.0 : 10.0);
ITEM VALUE U ;

TYPE COLOR STATUS

(3V(RED), 6V(BLUE),
4V(YELLOW));

TABLE HUES (V(RED) :

V(YELLOW));

ITEM VALUE U;

1081-1 4:2-5

Corrections

Make the necessary

SOFlecH

ANSWERS

The following table-declarations are incorrect.

corrections.

Incorrect Table-Declarations

1.

1081-1

TABLE HITS (-5 : -10);

ITEM VALUE U;

TABLE SCORES (3 : 5,
1.2 : 4);
ITEM VALUE U;

TYPE LAMP STATUS (V(OFF),
V(WEAK), V(ON)): TABLE
HOUSES (V(OFF) : 7, -7, :
0, 3);

ITEM VALUE U;

TABLE WORK (1 : 4, 1:5, 1
s 4,1:3,2,4,2,1:2);
ITEM VALUE U ;

TABLE NAMES (V(END), 7,
-2);
ITEM VALUE U;

TABLE MALES (7.0 : 10.0);
ITEM VALUE U;

TYPE COLOR STATUS

(3V(RED), 6V(BLUE),
4V(YELLOW));

TABLE HUES (V(RED) :

V(YELLOW));

ITEM VALUE U;

4:2-6

Make the necessary

Corrections
(upper bound must be > lower bound)

(bounds must be integer or default
status)

(lower and upper bound must be
same type) (V(OFF) : (V(ON))

(only seven dimensions allowed)

(default lower bound for integers
is zero, 0 : -2 is illegal)

(bounds must be integer or default
status)

(only default status allowed as
dimensions)

s - Y —— T T TPy e vy

SUBSCRIPTS

A subscript reference is used to reference an item in a table. The
form is:

name (subscript-list)
A subscript-~list has the form
(subscript, ...)

The subscript list must match the dimension-list in the number of sub-
scripts and the type of subscripts. The subscripts may be values or
formulae of the appropriate type and must be within the range of the
dimensions.

A subscripted data reference accesses a single item in a dimensioned
table. The subscripted item may be used anywhere a simple item may be
used.

Given the following declaration:

TABLE DIMENSIONS (2 : 5, 1);

BEGIN
ITEM LENGTH U;

ITEM WIDTH U;
ITEM HEIGHT U;
END
The following statements are correct uses of the subscripted items:
COUNT = LENGTH (I, J);
ANSWER = LENGTH (2, 1) * 4 + 7;

FLOAT'VAL = (* F 20 *) (HEIGHT (INDEX, INDEX-1));
TOTAL = -WIDTH (AA + 2, AA):

FOR INDEX : HEIGHT (-ALPHA, CAMMA**2) BY LENGTH
(2, 1) WHILE INDEX <= 10;

1081-1 4:2-7/4:2-8 smrlem

SUBSCRIPTS -- EXERCISES

i Given the following declarations:

TYPE LIGHT STATUS (V(RED), V(YELLOW), V(GREEN);
; TABLE SIGNALS (V(GREEN), 1: 5);

BEGIN

ITEM SYSTEM S; i
ITEM CONTROLS S;

END
The following data references are incorrect., Make the necessary

corrections.

Incorrect Reference Corrections
1. SYSTEM (V(GREEN)
2. SYSTEM (V(YELLOW), 3.0)
3. SYSTEM (V(RED), 8)
4, CONTROLS (V(RED),
(V(GREEN));
5. CONTROLS (2, 3, 5);

1081-1 4:2-9 5°Frec|.'

L)

-

The following data references are incorrect. Make the necessary
corrections.

Incorrect Reference Corrections

ANSWERS

Given the following declarations:
TYPE LIGHT STATUS (V(RED), V(YELLOW), V(GREEN);
TABLE SIGNALS (V(GREEN), 1 : 5);

BEGIN

ITEM SYSTEM S;

ITEM CONTROLS S;

END

1.

2.

SYSTEM (V(GREEN) SYSTEM (V(GREEN), 4)
SYSTEM (V(YELLOW), 3.0) SYSTEM (V(YELLOW), 3)

SYSTEM (V(RED), 8) SYSTEM (V(RED), 5)
CONTROLS (V(RED), CONTROLS (V(RED), 2)
(V(GREEN));

CONTROLS (2, 3, 5): CONTROLS (V(YELLOW), 5)

e X TS W SGess e

TR P T o A e s pade s o

SUBSCRIPTS -- EXERCISES

Given the following declarations:
TAPE LETTER STATUS (V(A), V(B), V(C), V(D)):
TABLE DIMENSIONS (7, 4, 2):
BEGIN
ITEM LENGTH F;
ITEM WIDTH F;
END
TABLE VALUE (1 : 3, V(B) ; V(D)):
BEGIN
ITEM COST U;
ITEM PRICE U;
ITEM SAVINGS S;
END

The following data references are incorrect. Make the necessary corrections.

Incorrect Data Reference Corrections

1.

1081-1

LENGTH (-4, 2, 1)
WIDTH (3, 4)

COST (2.0, V(B))
PRICE (3, V(A))
SAVINGS (0, V(C), 2)
COST (3, 3)

4:2-11

ANSWERS ‘

Given the following declarations:
TAPE LETTER STATUS (V(A), V(B), V(C), V(D)):
TABLE DIMENSIONS (7, 4, 2);
BEGIN
ITEM LENGTH F;
ITEM WIDTH F;
END
TABLE VALUE (1 : 3, V(B) ; V(D)):
BEGIN
ITEM COST U;

ITEM PRICE U;
ITEM SAVINGS S;
END

The following data references are incorrect. Make the necessary corrections.

Incorrect Data Reference Corrections

1. LENGTH (-4, 2, 1) LENGTH (4, 2, 1)
2, WIDTH (3, 4) WIDTH (3, 4, 1)

3. COST (2.0, V(B}) COST (2, v(B))

4, PRICE (3, V(A)) PRICE (3, V(C))
5. SAVINGS (0, V(C), 2) SAVINGS (1, V(C))

6. COST (3, 3) COosT (3, V(D))

htaniline oo il L ot Cie o i

PRESETS

As with simple tables, a dimensioned table may contain preset

entries. The preset may be given as part of the entry-description or as

part of the table attributes.

For example, the following declarations

result in the table diagrammed below:

TYPE LAMP STATUS (V(ON),
TABLE DIMENSIONS (71

BEGIN

ITEM LENGTH U;

ITEM WIDTH U;

ITEM HEIGHT U;

END

TABLE DIMENSIONS (71 :

172, V(ON)

V(OFF)):

: V(OFF))

72, V(ON) : V(OFF));

= 12(0);

BEGIN
ITEM LENGTH U = 4(0);
ITEM WIDTH U = 4(0);
ITEM HEIGHT U = 4(0);
END
DIMENSIONS
I
LENGTH | WIDTH } IGHT
(71, V(ON)) | (71, V(ON)) | V(ON))
=0 \ =0
|
LENGTH i WIDTH | ueucm
(71, V(OFF)) (71, V(OFF)) | (71, V(OFF))
=0 | =0 | = ‘0
! {
LENGTH | wioTH ’ HEIGHT
(72, V(ON)) | (72, V(ON)) | 72 V(ON))
=0 i =0 '
1 1
LENGTH | WIDTH | HEIGHT
(72, V(OFF)) | (72, V(OFF)) | (72, V(OFF))
=0 { =0 I =0

1081-1

4:2-13

R TR

Bt akic e 2t 2 U i
.o -

NOTE: The type of the preset must be equivalent or

implicitly convertible to the type of the item being preset.

An omitted value in a table-preset is not initialized. That item has unknown

value.
Example
D
TABLE STUDENTS (1: 10); STUDENTS
ITEM GRADE C = 2('A"),, l‘3RADE(I) = A!
2('8',), 'C';
OR . |GRADE(2) ="A'
TABLE STUDENTS (1 :10) =
2('AY,,2('B".), 'C GRADE(3) = ?
ITEM GRADE C;
GRADE(4) ='B'
GRADE(5) = ?
HGRADE(S) = B!
GRADE(7) = ?
GRADE(8) ='C
GRADE(9) =7
GRADE(10) =?

TABLE-PRESET -- EXERCISES

Make a diagram of the table declared below and fill in the values
supplied by the table-preset:

TABLE SQUARE (3, 3) = POS(0, 2) : -3, 4, 6,, -2, POS(1,2).
¢, 2(, -7, (POS(2, 2) : 3 (-4,, 2(1));

g BEGIN

ITEM EVENS S;
ITEM ODDS S;
END

1081-1

R e L of

Make a diagram of the table declared below and fill in the values

supplied by the table-preset:

(0,0)
(0.1
(0,2)
(0,3)
(1,0)

(1,1)
(1,2)
(1,3)

TABLE SQUARE (3, 3) = POS(0, 2)
., 2(, -7y, (POS(2, 2)

ANSWERS

: -3, 4, 6,, ~2, POS(1,2)
23 (-4, 2(0));

BEGIN

ITEM EVENS S;

ITEM ODDS S:

END
v - :op -| |ev -7 . oD
EV - . 0D - EV - ' OD
v -3 oD & EV -4 , OD
EV 6 Too - Ev 1 1 0D
EV -2 | oD - EV -4 , OD
EV - ' ob - EV 1 1 0D
Ev - ' op - EV -4 , OD
EVv -7 . OD - EV. 1 L oD

(2,0)
(2,1)
(2,2)
(2,3)
(3.0)
(3.1)
(3.2)
(3.3)

If the preset is a part of the table-attributes, all items within the
first entry are preset, then all items within the second entry, ... etc.

Example
TABLE ROSTER (1 : 5, 1 :5) =10 (, , 16);
BEGIN
ITEM NAME C 20;
ITEM S'S'N C 9;
ITEM AGE U 7;
END

In the first entry of ROSTER, NAME (1, 1) is not preset, S'S'N
(1, 1) is not preset, AGE (1, 1) is preset to 16; in the second entry of
ROSTER, NAME (1, 2) is not preset, S'S'N (1, 2) is not preset, AGE
(1, 2) is preset to 16; ... in the tenth entry of ROSTER, NAME (2, 5)
is not preset, S'S'N (2, 5) is not preset, AGE (2, 5) is preset to 16.

All remaining items are not preset.

This may have been written in the following way:

TABLE ROSTER (1 : 5, 1 : 5);
BEGIN
ITEM NAME C 20;

5 ITEM S'S'N C 9;

ITEM AGE U 7 = 10 (16);
END

A positioner may be used in a dimensioned table-preset to select

an entry to begin the preset. The form is:
POS (index-list) : value,
The form of the index-list is:

index,

1081-1 4:2-17 SOFrECH

o]

NOTE: The index-list must match the dimension-list in

number of indices and type of indices. The indices may
be values or formulas of the appropriate type known at
compile-time and must be within the range of the

dimensions,

Example

TYPE ALPHA STATUS (V(A), V(B), V(C), V(D), V(E), V(F);
V(G));

TABLE TWO'D (V(B) : V(F)) = POS (V(C)) : 2(10), 2(10),
POS(V(F)) : 10;

BEGIN

ITEM LENGTH U;
ITEM WIDTH U;
END

Table TWO'D could be diagrammed as follows:

TWO'D
T

LENGTH(V(B)) lWIDTH(V(B))
1
LENGTH(V(C)) | WIDTH(V(C))
=190 p =10
LENGTH(V(D)) | WIDTH(V(D))
=10 =10

—b-

|
LENGTH(V(E)) | WIDTH(V(E))
]

LENGTH(V(F)) =WIDTH(V(F))
=10 i

1081-1 4:2-18

CONSTANT TABLES

A dimensioned table may be declared to be constant, in which
case the value of the items contained in the table may not be altered

during program execution. The form is:
CONSTANT TABLE name [table-attributes];
entry-description

The constant table preset may be given either as part of the table-
attributes or the entry description. All items within a constant table
do not need to be preset, though these items will have unknown value

during execution.
Example
CONSTANT TABLE LOOKUP (1 : 10);
BEGIN

I TEM NUMBER F = 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0,
8.0, 9.0, 10.0;

ITEM SQR F = 1.0, 4.0,, 16.0, POS(8) : 64.0;
ITEM CUBE F = 1.0, 8.0,, 64.0, POS(8) : 512.0;

ITEM RECIP F = 1.0, .5,, .25, POS(8) : .125;

END

TABLE TYPE-DECLARATIONS

As discussed in Section 1, a table type-declaration declares a table-
type-name which may be used in a table-declaration. The form is:

TYPE table-type-name TABLE [dimension-list];
entry description
Once declared, a table-type-name may be used as follows:
TABLE name [(dimension-list)] table-type-name;
Consider the following type-declaration:
TYPE GRID TABLE (1 : 5, 2 : 4);
BEGIN
ITEM XCOORD F;
; ITEM YCOORD F;
END

GRID creates a template like the one diagrammed below. Given a table-
declaration like TABLE SQUARES GR1ID, SQUARES will be laid out
according to the template of GRID.

1081-1 4:2-20

table type name, the preset must be part of the table attributes.

GRID

1
XCOORD | YCOORD
(1, 2) (1, 2)
-+
xcoorp | ycoord
(,3 | (.3
)
.XCOORD | YCOORD
(1, 4) | (1, 8
|
XCOORD : YCOORD
(2, 2) (2, 2)
1
|
XCOORD | YCOORD
(5, 1) } (5. 4)
|
{

the table-declaration.

Example
TYPE 1D TABLE;

1081-1

BEGIN
ITEM NAME C 20;
ITEM AGE U 7;

If the programmer wishes to preset a table declared using a

A table may have one and only one dimension-list.

The dimension-list may be a part of either the type-declaration or

4:2-21

ITEM HEIGHT F 15;
END

TABLE CLASS (1 : 200) ID;
iD

HEIGHT

CLASS
NAME(1)

AGE(1) HEIGHT(I)]

J 1
NAME(100)} AGE(100) !—!EIGHT(!OO]
1

In the above example, the table CLASS has one hundred entries,
each of those entries is of type ID. Each of those one hundred entries

has NAME, AGE, and HEIGHT.

TYPE PAYCHECK TABLE:; PAYCHECK
BEGIN |
ITEM REG'PAY A 10, 7; REG'PAY | OT'PAY
ITEM OT'PAY A 10, 7; .
END

TYPE BILLING TABLE (1 : 12) BILLING

PAYCHECK; T
REG'PAY (1)) OT'PAY(1)

!
REG'PAY(12)! OT'PAY(12)
|

1081-1 4:2-22

e

O e e €M T

TABLE OVERHEAD BILLING; OVERHEAD

REG'PAY (1) | OT'PAY(1)
[

REG'PAY (12)] OT'PAY(12)
I

NOTE: Pointers must be used to reference items in tables
declared using a table-type-name. Pointers will be dis-

cussed in Workbook 5.

LIKE-OPTION

Dimensioned table type-declarations may also include a like-option.
A like-option allows the programmer to create several variable length
records from a common beginning., The form is:

TYPE table-type-name TABLE LIKE table-type-name;

entry-description

NOTE: An entry-description or a null statement (;) is
required.

A table type-declaration may have one and only one dimension-
list. If the like-option refers to a dimensioned table type, the type-
declaration itself may not have a dimension list. If the type-description
has a dimension-list, a table being declared with that table-type-name
must not also have a dimension-list.

For example, consider the following type declarations as diagrammed
in Figure 2-2,

1081-1

1081-1

TYPE BIBLIOGRAPHY TABLE(99);
BEGIN
ITEM BOOKNO U;
ITEM TITLE C 20;
END
TYPE LIBRARY TABLE LIKE BIBLIOGRAPHY;
BEGIN
ITEM COPIES U;
ITEM LOCATION C 4;
END
TYPE CATALOG TABLE LIKE LIBRARY;
BEGIN
ITEM PUBLISHER C 12;
ITEM ILLUSTRATED B;
ITEM AUTHOR C 20;
END

4:2-24

noAe sjqe) uondgp

*7-7 24nbi4

-T- T T + T Y
(66)1nv “ 6o | (e6)and m (66)v201 m (66400 aa.u._.:hm (66)ONYgE
[—’ A 'y
T T — i . 7
(inv W | (end | (1)vooT (1)dod) (3N | (1)ONxg
- _ L ” =) L)
T N M)
(0)1nv “ @nru ! @and ' (0)voor ! ::uou" (©)31L1L | (0)ONME
1 H ! L 1 1
20VLVD
=1) T H
(66)vD07! (66)d00! (66)a1L1L | (66)JONNE (66)31111] (66)ONNIg
e 1 i \M\
=T T T T
(Lvo0T) (1)dod) (31! (1)oNx8 (a3 (1)onxg
L. 1 P o\
! [M i
(0)v201} (0)d02) JERTIR (0)ONNS (0)3L11) (0)oNME
| | 1 1
Auvaai AHdV¥D0IT8Ig
4
f
H
[
Sl cndtanbiscona it v i et S o, .r s it i e

2-25

4

1081-1

T % i .

TR TS T g

TABLE TYPE-DECLARATIONS ~- EXERCISES

Given the following declarations:
TYPE SHORTSTRING C 5;
TYPE MEDSTRING C 8;
TYPE LONGSTRING C 12;
TYPE IDENTIFICATION TABLE;
BEGIN
ITEM NAME LONGSTRING;
ITEM RANK SHORTSTRING;
ITEM SERIALNO LONGSTRING;
ITEM ENLISTDATE MEDSTRING;
ITEM ACTIVE'FLAT B;
END
TYPE INACTIVE TABLE
LIKE IDENTIFICATION;
ITEM RETIREDATE MEDSTRING;
TYPE ACTIVE TABLE
LIKE IDENTIFICATION;
BEGIN
ITEM SERVICEPERIOD U;
ITEM ASSIGNMENT U;

END

TR T T

For the following table-declarations, draw a diagram showing the items in

each entry and any preset values.

1.
2.
3.

1081-1

TABLE SMITH IDENTIFICATION;

TABLE JONES ACTIVE;

TABLE PRESCOTT IDENTIFICATION = 'PRESCOTT',,'123',, TRUE;
TABLE COMPANY'C (20) INACTIVE;

Declare a table that includes marital and education status for
active personnel.

y:2-27 SOFlecH

] I (| [
) I (! I
a:mm_hmm“ (02)14,40V| (02)3LvaINg] scoz.mmm“ (0Z) %NV ! (0Z)IWVN _“
. t
:]
i T]]] }
" “ " _ ! w
(0)34113¥) (0)14,10V) (0)3LVAINI | (0)ON,M3S | (0)3NVY | JIWVN i
. 2,ANVAWOD °% u
she i - I cz1 I - 1 1100S34d @
I _ ! | o
OV14,3AILOV | 3LVALSIIN | ON,<IvI¥as ! ANVY | INVN o
1100538d '€ =
]]] i | 1
n in |8 18 D 1 ZL D 159D 121D
* !) | | | t
LINIWNDISSY | ¥3d 3DIAY3S) OVI4,3AILOV | ILVALSIINT| ON,IVI¥3S YNV IWVN
saNor
a 180 Fzo s o 210
o<._“__m>_5<“ 3LVALSIING ON,IVIN3S “ MNVY | INVN

HLIWS

4 SHIAMSNY

T

ona3a

a3z

N olssyY

dAY3S

i 1 1)
" |]]
TV mp<o._zm_“ ON¥3s | v_z<~:.

JWVYN

‘an313NdWoD 30ANHOr 318Vl
an3

((avDIA ‘(HOVEIA “HIILIA “(SHIA ‘(SD)A) SNLVLS ONA3 WALl

PROCIIRS

‘g gITHAVYIW W3 LI
NID39
IIAILOV NI I18VL aLILITdWOD IdAL

'S

1081-1

SR RS i NIOAE S AN, R a0 T 17 5 B 3 o KAy

TABLE TYPE EQUIVALENCE AND IMPLICIT CONVERSION

The following is a complete list of requirements for table type
equivalence and implicit conversion for simple and dimensioned tables.
Certain of these concepts have not been discussed yet, but are included
here for completeness and ease of reference.

Two tables have equivalent types if:

° Their structure specifiers are the same
° They have the same number of dimensions
° They have the same number of elements in each dimension
] They have the same number of items in each entry
° The types (including attributes) and the textual order
of the items are equivalent
] The explicit or implied packing-spec on each of these items
is the same, and
] The ! ORDER directive is either present or absent in
both tables

The names of the items, as well as the types and bounds of the
dimensions, need not be the same for the tables to be equivalent.

A table entry is considered to have no dimensions.

A table whose entry contains an item-declaration is not considered
equivalent to a table whose entry is declared using an unnamed item-
description.

EXPLICIT CONVERSION

A table may be explicitly converted to a bit string through the use
of the REP built-in function. The conversion of a bit string to a table

type is legal only if the size of the bit string is equal to the BITSIZE of
the REP of the table type.

An explicit conversion operator may be applied to a table to assert
its type for the benefit of the reader. The conversion-operator may not
change the type of the table.

Example
TYPE SQUARE TABLE;

ITEM VALUE F;
TABLE NUMBERS SQUARE;
. (* SQUARE *)(NUMBERS) ...

1081-1 4:2-31/4:2-32 SUFTECH

TABLE DECLARATIONS -- EXERCISES

Declare a table of 100 entries, each entry to be made up of
variables to be assigned the following data:

a.

b.

g.

A person's name,
A person's age,

A person's height, in centimeters, always exact to the
nearest tenth of a centimeter (i.e., a millimeter),

A flag to indicate if married or not,
The state of a person's eye color,
A person's grade point average,

The number of whole grams that a person's weight
differs from the average.

Declare a constant table with components equal to the square
roots of the integers 1 through 10,

Given the following declarations:

TYPE LETTERS STATUS (V(A), V(B), V(C), V(D),
V(E), V(F), V(G), V(H)}, V(). V(UJ),

TABLE RESULTS(9, V(J)):
ITEM DATA POINT U;

Initialize every other component to 1.
Initialize every fifth component to 2.
Initialize the four corners to 3.

Initialize DATAPOQINT(6, V(G)) through
DATAPOINT(7, V(C)) to 4.

ANSWERS

1. TABLE ID (1 : 100);
BEGIN
ITEM NAME C 20;
ITEM AGE U;
ITEM HEIGHT A 9, 4;
ITEM MARRIED B;
ITEM EYES STATUS (V(BROWN), V(BLUE)):
ITEM AVE F;
ITEM DEVIATION S;
END
2. CONSTANT TABLE SQUAREROOTS (1 : 10);
ITEM ROOT F = 1., 2,%* .5, 3.,** 5 2,, 5.**5,
6.%% 5, 7.%* |5, 8.%* |5, 3., 10.** .5;

3a. TABLE RESULTS (9, V({J)) = 50(1,):

3b. TABLE RESULTS (9, v(J)) =20(, , ., ., 2);

L]

3c. TABLE RESULTS (9, v(J)) POS(0, V(A)) : 3, POS(9, V(A)) : 3,
: 3

POS(0, V(J)) : 3, POS(9, V(J))
3d. TABLE RESULTS (9, v(J))

i

POS(6, V(G)) : 7(4);

1081-1 4:2-34

e AOWER s o Wi s B i s e it
ESBNEY. . NIV S SN 2 S S IR R = s

i

SECTION 3
BLOCKS

B e

e

SOFlecH

-t

R g et e D A RS A PRI 1 b oo e A gt 5 S NSNS RO A .- ot . L LA AL

BLOCKS

A block is a collection of values gathered into one region of memory.
These values can be items, tables or nested blocks. Blocks are useful in
memory management. For instance, certain data that must be paged in
and out of memory together may be placed in a block. Because the items,
tables and blocks are enclosed in a block, the compiler allocates them
together. However, the compiler is free to allocate the data within the
block in any order. (If order is important, use the ! ORDER directive.)

A block-declaration has the form:
BLOCK name ;
block-body
A block-body is:
Item-declaration
{ table-declaratipn }
block~-declaration
Examples
a. BLOCK INTERFACE;
BEGIN
ITEM CHANNEL U;
ITEM FREQUENCY A 6, 2;
TABLE PARS (9);
BEGIN
ITEM SETTING F;
ITEM DIAL S 10;
END
END

1081-1

b. BLOCK DATAGROUP;
BEGIN
ITEM COUNT U;
¢ BLOCK INFO;

BEGIN

é_ TABLE LIBRARY (1 : 10);
: BEGIN

ITEM BOOK C 20;

it AL At B

ITEM AUTHOR C 20;
ITEM PRESENT B 1;
END
ITEM EMPLOYEES U 20;
ITEM.COST A 10, 7;
END
TABLE FACILITY (3, 4, 3);
ITEM PRICE S;
END

When a programmer uses the name DATAGROUP, all the information about
all the items, tables, and nested blocks becomes available,

NOTE: A block may be "simple" (either one data-declaration or

a null declaration) though a simple block-body has no real role in the
language.

1081-1 4:3-2 ‘

Examples
BLOCK SMALLT1;

ITEM BOOKS U 10;
BLOCK SMALL 2; ;
BLOCK SMALL 3;

BLOCK DATA;

TABLE NUMBERS:; |
BEGIN ;
ITEM AGE U; :
ITEM HEIGHT F;

END

1081-1

T 4 s

BLOCK TYPE-DECLARATIONS

A block type-declaration declares a block-type-name that may be

used in a block-declaration. The form is:
TYPE block-type-name BLOCK
block body
The block type-name may then be used in a block-declaration:

BLOCK name block-type-name [block-preset];

Example

TYPE GROUP BLOCK
BEGIN
ITEM COUNT S;
TABLE POSITION (1 : 20);
BEGIN
ITEM XCOORD F;
ITEM YCOORD F;
END
BLOCK REGISTER;
BEGIN
ITEM NAME C 10;
TABLE PLACE (1 : 3, 1 : 4);
ITEM NUMBER S;
END
END
BLOCK MAPPINGS GROUP;
BLOCK XX;
BEGIN
ITEM TOTAL S;
BLOCK INFO'SET GROUP;
END

1081-1 4:3-4

e e ARSI ———T

e i s A

THE JOVIAL (J73) WORKBOOK
VOLUME 5
POINTERS

1081-1
April 1981

This material may be reproduced by
and for the US Government pursuant
to the copyright license under DAR
Clause 7-104.9(a) (1977 APR).

Submitted to

Department of the Air Force
Rome Air Development Center
IS1S
Griffiss Air Force Base, NY 13441

Prepared by
SofTech, Inc.

460 Totten Pond Road
Waltham, MA 02154

©Copyright, SofTech, Inc., 1981

PREFACE

f Workbook 5 is intended for use with Tape 5 of the JOVIAL (J73)
F Video Course. Its purpose is to elaborate upon and reinforce concepts
and language rules introduced in the videotape.

This workbook discusses pointer item declarations, dereferences,
pointer qualified references, the setting of pointer values, and the LOC
function. A summary of the material presented can be found in Section 3.

1081-1

e —————— e R

Sectioiv
1
2
3
A
]
1
 ;
|
8
b
[
4
1081-1
i LA
b A

TABLE OF CONTENTS

SYNTAX

POINTERS

THE LOC FUNCTION
SUMMARY

5:iii

Page
5:iv

5:1-1
5:2-1

5:3-1

o

Syntax

[some-feature]

{one | other}

his-one
that-one

letter ...

(letter), ...

thls-one
that-on .)]
+ another

1081-1

SYNTAX

The ryntax conventions used in the JOVIAL (J73) Video Course
and workb.... are as follows:

Meaning

Brackets indicate an
optional feature.

Braces with a vertical
bar indicate disjunction-
a choice between
alternatives,

Braces with each feature
on separate lines indicate
disjunction - a choice
between alternatives.

The sequence '...'
indicates one or more
repetitions of a feature.

The sequence "..."
following a comma (or a
colon) indicates one or
more repetitions of the
feature separated by
commas (or colons).

Syntax symbols may be
combined.

e B R e O s

PS8 T

Sample Expansions

some-feature
OR
nothing

one
OR
other

this-one
OR
that-one

letter
letter letter
letter letter letter

(letter)
(letter) (letter)
(letter) (ietter) (letter)

this-one + (another)
that-one + (another)
+ (another)

SOFlecH

SECTION 1 1

POINTERS |

SOFlecH

i STV TP o PO, " —— — .] ot SN St S et - -

l
| .
% ' b
POINTERS !
1
A pointer is an item whose value is a machine address. They are
used to indirectly reference data. Pointers are often thought confusing
by the novice programmer though without good reason. With a little v
practice, the use of pointers will become second nature and provide a f
powerful means of exploiting the full potential of JOVIAL (J73). :
The general syntax for pointer item declarations is of the same
form as all other item declarations:
. type-description e .
[CONSTANT] item name (item-ty pe-name }[ltem preset];
ITEM ITEM is a JOVIAL (J73) reserved word. It has a specific "
- meaning to the compiler, which restricts its use to
3 declarations. [t cannot be used as a name.
A name is a sequence of letters, digits, dollar signs
and primes (single quote characters). It must begin
with a letter or a dollar sign, and be at least two
characters long. A name may be any length, though
only the first 31 characters are examined for uniqueness
within the program. (Fewer than 31 characters may be
examined for external names. External names are
discussed in Workbook 8).1!
[type descriptioﬂ A pointer type-description has the form
)
* P [type-name]

A pointer followed by a type-name references items only

of that type. That pointer is said to be "typed." A
pointer not followed by a type-name references items of
any type. That pointer is said to be "untyped." An
untyped pointer has limited uses and will not be discussed.

E] A semi-colon terminates the declaration.

1See list of JOVIAL (J73) reserved words given in Workbook 1, p. 3-2.

1081-1 5:1-1 SOFlec '

POINTER ITEM PRESETS

JOVIAL (J73) has only one pointer literal - NULL. Any pointer,
typed or untyped, may be preset to NULL or receive the value NULL in

an assignment.

Examples
ITEM MAXPTR P MAX = NULL;
ITEM LISTPTR P = NULL;

CONSTANT POINTER ITEM-DECLARATION

A pointer item may be declared to be of constant value. In this
case the reserved word CONSTANT and an item preset (i.e., NULL) are

required.
Examples

CONSTANT ITEM MAXPTR P MAX = NULL;

CONSTANT ITEM LISTPTR P = NULL:

Pointer ltem Declarations: Examples

ITEM MAXPTR P MAX; Item MAXPTR is a pointer which
references data only of type MAX.

ITEM VALPTR P VALUE; Item VALPTR is a pointer which
references data only of type VALUE.

CONSTANT ITEM ENDPTR P ltem ENDPTR is a pointer item with

= NULL; a constant value of NULL.

ITEM FOOPTR P; Item FOOPTR is an untyped pointer.

It can contain the address of a data
object of any type.

S TR T WY PR

POINTER DEREFERENCE

A pointer dereference is of the form:

Q pointer-name ‘
(pointer-formula) !

A pointer dereference results in a data object of the type pointed

to by the pointer.

Examples

1)

2)

3)

TYPE MAXVAL S; 4
ITEM MAXPTR P MAXVAL;

Dereference Meanirg
@ MAXPTR This pointer dereference results in an

item of type MAXVAL.
TYPE MAXVAL S;
ITEM MAXPTR P MAXVAL;

@ MAXPTR = 2; The value 2 is assigned to the item
pointed to by MAXPTR.

@ MAXPTR = @ The item pointed to by MAXPTR is

MAXPTR + 1; incremented by one and assigned
back into the item pointed to by
MAXPTR,

TYPE SQUARE TABLE;
BEGIN
ITEM LENGTH U;
ITEM WIDTH U;
END

ITEM SQPTR P SQUARE;

Dereference Meaning

@ SQPTR This pointer dereference "results" in a
table of type SQUARE - a table with one
entry with two items, LENGTH, WIDTH.
(Of course, SQPTR does not point to a
physical data object until a table has been
declared using square as a type description.)

) TYPE STATS BLOCK
BEGIN

TABLE PRICE;

, BEGIN
' ITEM COST U;
ITEM VALUE U;
F' END
] ITEM PROFIT S;
! END
“ ITEM STPTR P STATS;
Dereference Meaning
@STPTR This pointer dereference results in a
] block of the type STATS - a block

with a table, PRICE, and an item,
PROFIT. (Again, STPTR does not
point to a physical object in storage
until a block has been declared using
STATS as a type description.)

POINTER QUALIFIED REFERENCES

Any items within a table deciared using a table type name or items
x within blocks declared using a block type name must be accessed by using
a pointer. Consider the following situation:

TYPE GRID TABLE (1 : 10);
BEGIN
= ITEM XCOORD S;

ITEM YCOORD S;

 r—

END
TABLE MAP GRID;
TABLE CHECKERS GRID;

wmbiamy e -

The type declaration above creates a table template named GRID.
GRID has ten entries, each of which contains items XCOORD and YCOORD.
MAP and CHECKERS are declared to be tables that look like GRID. Each
table contains ten entries; each entry contains items XCOORD and YCOORD.
What happens when a reference is made to XCOORD (3) in a program with

both of these tables? Obviously, the reference is ambiguous.

To avoid this problem, a pointer-qualified reference is used to
access items in typed tables or blocks. The forms of a pointer-qualified
reference are:

name [(subscript-list)] dereference
or
dereference [(subscript-list)]
A dereference is of the form

POINTER-name
(pointer-formula)

Examples

1) TYPE DATA TABLE;

BEGIN

ITEM VALUE U;

ITEM FIND B;

TYPE DATA
END |
VALUE 1 FIND

ITEM DATAPTR P DATA: L
References Meaning
@ DATAPTR DATAPTR points to objects of type

DATA. The dereference of DATAPTR
results in a table with one entry
containing two items, VALUE and FIND.

VALUE @ DATAPTR This data reference results in one item,
VALUE from a table of type DATA.

1081-1 5:1-5 SOFrECH

T T, TR

2) TYPE DIMENSIONS TABLE (1 : 15);

BEGIN TYPE DIMENSIONS

ITEM LENGT!i F; LENGTH(I@DTH(I) {HEIGHT (1)

ITEM WIDTH F; LENGTH(ZIWIDTH(Z) HEIGHT(2)

ITEM HEIGHT F; : |
END Esncmns)i wuomus)}uencur(us)

ITEM DIMPTR P DIMENSIONS;

References Meaning
@ DIMPTR DIMPTR points to objects of type

DIMENSIONS. The dereference of
DIMPTR is a table with fifteen entries,
each with three items, LENGTH,
WIDTH, HEIGHT.

@ DIMPTR(13) This reference is the entire thirteenth
entry, with three items, LENGTH,
WIDTH, and HEIGHT.

LENGTH(11) @ The dereference of DIMPTR results
DIMPTR in a table of type DIMENSIONS.
This reference is LENGTH(11) from
a table of type DIMENSIONS.

3) TYPE COORD TABLE;

; TYPE COORD
! BEGIN LONG LAT
ITEM LONG S;
ITEM LAT S; TYPE POSITION
LONG(1) v LAT(1)
END L
» LONG(2) | LAT(2)
TYPE POSITION TABLE 4
(1 : 25) COORD;
—
ITEM CPTR P COORD; LONG(25) i LAT(25)

ITEM PPTR P POSITION;

1081-1 5:1

6

Dereference

@ CPTR

@ PPTR

LAT @ CPTR

LONG(20) @ PPTR

@ PPTR(4)

One possible use may be:

LAT @ CPTR = LONG(20) @PPTR;

1081-1

At g OO AR NIt IS 0t oo Nt e

Meaning

CPTR points to objects of type COORD.
The dereference of CPTR results in a
table with one entry with two items,
LONG and LAT.

PPTR points to objects of type
POSITION. The dereference of PPTR
results in a table with twenty-five
entries each with two items, LONG

and LAT.

This data reference results in one

item, LAT, from a table of type |
COORD. ‘
This data reference results in one |
item, LONG(20), from a table of type J
POSITION.

This reference results in the entire
fourth entry from a table of type
POSITION. The entry is composed of
LONG and LAT.

5:1-7

1081-1

POINTERS -- EXERCISES

Given the following declarations:

TYPE CITATION

TYPE SHORTSTRING C 6;

TYPE CITATION TABLE;
BEGIN

ITEM AUTHOR C 20;

ITEM DATE SHORTSTRING;

END

TYPE LIBRARY TABLE (1 : 50);
' BEGIN

ITEM BOOK'NO SHORTSTRING;

ITEM COPIES U;
END

TYPE PROSE TABLE (9) CITATION;

ITEM SPTR P SHORTSTRING;
ITEM CPTR P CITATION;

ITEM LPTR P LIBRARY;

ITEM PPTR P PROSE;

AUTHOR E DATE
'l
TYPE LIBRARY
1
BOOK'NO(1) | COPIES(1)
T
BOOK'NO(50) | COPIES(50)
) |
TYPE PROSE
]
AUTHOR(0) ! DATE(0)
1
AUTHOR(9) ! DATE(9)
1

5:1-8

Determine if the following are correct or incorrect data references.
Reference C |
1. 1 CPTR

2. BOOK'NO(42) @LPTR

3. AUTHOR @ CPTR

4. DATE(4) @PPTR

5. @SPTR

6. AUTHOR @ PPTR

7. @ PPTR(9)

8. DATE(3) @CPTR

9. @LPTR(18)
10. DATE(14) @ PPTR

11. COPIES @LPTR

12. @PPTR

13. COPIES @ LPTR(29)

TN .

1081-1 5:1-9

L Rt iras a2 e 7 A, 1T i S e MRS 11 ISR DS & i T e

ANSWERS

Determine if the following are correct or incorrect data references.

References c
1. @CPTR
2. BOOK'NO(42) @LPTR
AUTHOR @ CPTR
DATE(4) @ PPTR
@ SPTR
AUTHOR @PPTR X (AUTHOR (8) @ PPTR)
@ PPTR(9)
DATE(3) @ CPTR X (DATE @ CPTR)
@ LPTR(18)
DATE(14) @ PPTR X (subscript out of range)
COPIES @ LPTR X (COPIES(20) @ LPTR)
@ PPTR

COPIES @ LPTR(29) X (COPIES(29) @ LPTR)

TYPE EQUIVALENCE, IMPLICIT CONVERSION

Two pointer types are equivalent if they are both untyped pointers
or if they are both typed pointers with the identical type attribute.

A typed pointer will be implicitly converted to an untyped pointer.

Declarations

TYPE MAX U 7;

ITEM MAX1PTR P MAX;
ITEM ANY1PTR P;
ITEM MAX2PTR P MAX;
ITEM ANY2PTR P;

MAX1PTR and MAX2PTR have equivalent types - they are both
typed pointers, pointing to items of type MAX.

ANY1PTR and ANY2PTR have equivalent types - they both are
untyped pointers.

The type of MAXTPTR may be IMPLICITLY CONVERTED to the
type of ANY1PTR, not vice-versa.

EXPLICIT CONVERSION

The forms of an explicit conversion are:

(* type-description *)
type-indicator
item-type-name

(* item-type-name *)

(formula)

Pointer types may be explicitly converted to:

P - Converting a pointer to a different pointer type means
that the pointer will be considered as a pointer of the
specified type.

Example

1081-1

TYPE MAX U 7;

ITEM ANY1PTR P;

ITEM NEWPTR P NEW;

(* P MAX *) (ANY1PTR)

(* P MAX *) (NEWPTR)

Data items that may be converted to a pointer type are:

B - Conversion will take place only if the size of the bit
string is equal to BITSINPOINTER.

S, U - Converting an integer to a pointer is equivalent to
first converting the integer to type B BITSINPOINTER,
then converting the bit string to a pointer.

Pointer types may be explicitly converted to:

B - When a pointer type is explicitly converted to type B n,
the result is the rightmost n bits of the pointer.

S, U - Converting a pointer to an integer type is equivalent

to first converting the pointer to type B BITSINPOINTER,
then converting the bit string to an integer.

5:1-12

s L o

SECTION 2
THE LOC FUNCTION

LOC

The LOC function returns the machine address of its argument.

The form is
LOC (argument)

Argument may be a data-name, a statement-name or a subroutine-name.
The LOC function returns a typed pointer if the argument is declared
with a type-name. Otherwise the pointer returned will be untyped.

The LOC function is a pointer formula. The value it returns may
be assigned to a pointer item or may be used in a pointer dereference.
(A pointer used in a dereference must be a typed pointer.)

Examples
1) TYPE SQUARE TABLE;
BEGIN
ITEM LENGTH U;
ITEM WIDTH U;
END
ITEM SQPTR P SQUARE;
TABLE ROOM SQUARE;

Expression Result
LOC(ROOM) The function returns a pointer of

type SQUARE that points to the
address of ROOM.

SQPTR = LOC(ROOM); SQPTR points to the address of ROOM.

1081-1 5:2-1 SOFlec4

VT Sy

2) TYPE COORD TABLE;
BEGIN
ITEM LONG S;
ITEM LAT S;
END
TABLE SPOT COORD;
TABLE HOUSE (1 : 10, 1 : 10) COORD;
ITEM CITPTR P COORD;

Y

Expression Meaning

CITPTR = LOC(HOUSE(4, 5)); CITPTR points to the address of
the entire 4, 5th entry of HOUSE.,
(Each entry in HOUSE is of type

" COORD).
i CITPTR = LOC(SPOT); CITPTR points to the address of
3 SPOT.
3) TYPE COORD TABLE; 4
BEGIN
ITEM LONG S;
ITEM LAT S;
END

TYPE POSITION TABLE (1 : 25) COORD;
TABLE SPOT COORD;
TABLE WORLD POSITION;

1081-1 5:2-2

Data Reference

LAT @ (LOC(SPOT))

@ (LOC(WORLD))

LONG @ (LOC(WORLD(13)))

Meaning

LLOC of SPOT returns a pointer of
type COORD that points to the
address of SPOT. The reference
is to the item LAT in that table.

LOC of WORLD returns a pointer of
type POSITION that points to the
address of WORLD. This reference
is to the entire table.

LOC of WORLD(13) returns a pointer
of type COORD that points to the
address of the thirteenth entry in
WORLD. The reference is to the
item LONG in that entry.

THE LOC FUNCTION -- EXERCISES

Given the following declarations:
TYPE CITATION TABLE;
BEGIN
ITEM AUTHOR C 20;
ITEM DATE C &6;
END
TYPE LIBRARY TABLE (1 : 50):
BEGIN
ITEM BOOK'NO C 6;
ITEM COPIES U;
END
TYPE PROSE TABLE(9) CITATION;
TABLE QUOTE CITATION;

TABLE INFORMATION (1 : 3, 1 : 3) CITATION;

TABLE BOOK'STORE LIBRARY;
TABLE CATALOG PROSE;

Determine if the following are correct or incorrect references

using the LOC function.

Reference

1. DATE @ (LOC(QUOTE))

2. AUTHOR @ (LOC(INFORMATION(2, 3)))
3. COPIES @ (LOC(BOOK'STORE})

1081-1 5:2-4

c

Reference

4.

10.

11.

12.

DATE(3, 1) @ (LOC(INFORMATION))

DATE(9) @ (LOC(CATALOG))
AUTHOR @ (LOC(CATALOG(4)))
AUTHOR(4) @ (LOC(QUOTE))

AUTHOR @ (LOC(CATALOG(0)))
BOOK'NO(32) @ (LOC(BOOK'STORE))
DATE @ (LOC(BOOK'STORE))
COPIES @ (LOC(BOOK'STORE(4)))

BOOK'NO @ (LOC(QUOTE))

1e]

T P T €Ty
> - .. N

R

T e e S T T R R

ANSWERS

Reference

10.

11.

12,

DATE @ (LOC(QUOTE))
AUTHOR @ (LOC(INFORMATION(2, 3)))
COPIES @ (LOC(BOOK'STORE))

DATE(3, 1) @ (LOC(INFORMATION))

DATE(9) @ (LOC(CATALOG))
AUTHOR @ (LOC(CATALOG((4})))
AUTHOR(4) @ (LOC(QUOTE))

AUTHOR @ (LOC(CATALOG(0)))
BOOK'NO(32) @ (LOC(BOOK'STORE))
DATE @ (LOC(BOOK'STORE))
COPIES @ (LOC(BOOK'STORE(4)))

BOOK'NO @ (LOC(QUOTE))

[e]

i
i
i
]
!
i

X (COPIES(10) @
(LOC...)) ’i

X (DATE @ (LOC(INFO
(3,1)))

X (AUTHOR @ (LOC
(QUOTE)))

X (DATE not in BOOK'ST)

X (COPIES(4}) @
(LOC(BK'S)})

X (BOOK'NO not in
QUOTE)

A e T bt by SR L g bt

POINTERS AND THE LOC FUNCTION

By using the LOC function and a pointer, an item in a typed table
or a typed block may be correctly referenced.

The first slide in this section presented the problem:
TYPE GRID TABLE (1 : 10); ~
BEGIN
ITEM XCOORD S;

ITEM YCOORD S; > XCOORD({(3} is an illegal
data reference.
END

TABLE MAP (1 : 10) GRID;

TABLE CHECKERS GRID; J/
. The following declarations and statements clarify the problem:
{ ITEM GPTR P GRID;
GPGR = LOC(MAP);

XCOORD(3) @ GPTR =7;

. ——————

i e 1, Teini RS Tt e it e e et e L o e
-

THE LOC FUNCTION -- EXERCISES

Given the following declarations:
TYPE CITATION TABLE;

BEGIN

ITEM AUTHOR C 20;

ITEM DATE C 6;

END
TYPE LIBRARY TABLE (1 : 50);

BEGIN

ITEM BOOK'NO C 6;

ITEM COPIES U;

END
TYPE PROSE TABLE(9) CITATION;
TABLE QUOTE CITATION;
TABLE INFORMATION (1 : 3, 1 : 3) CITATION;
TABLE BOOK'STORE LIBRARY;
TABLE CATALOG PROSE;

and given the following statements:
CPTR = LOC(QUOTE);
. LPTR = LOC(BOOK'STORE);
j . PPTR = LOC(CATALOG);
' CITPTR = LOC(CATALOG(8));
IPTR = LOC(INFORMATION(2, 1));

1081-1 5:2

8

Determine if the following data references are correct or incorrect.

Reference

1.

2.

10.
1.

12.

DATE @ CPTR

@ (LOC(BOOK'STORE)) (15)
AUTHOR(2, 1) @ IPTR
BOOK'NO(13) @LPTR
DATE @ IPTR

@ CPTR(7)

COPIES @ LPTR(27)
AUTHOR @ CITPTR
BOOK'NO @ CPTR

DATE @ IPTR
DATE @ (LOC(CATALOG(3)))
COPIES @ (LOC(BOOK'STORE(#4}))

ANSWERS

Reference c 1
1. DATE @ CPTR X !
2. @ (LOC(BOOK'STORE))(15) X J
3. AUTHOR(2, 1) @ IPTR X (AUTHOR @ IPTR)
4. BOOK'NO(13) @ LPTR X i’
5. DATE @ IPTR X
6. @CPTR(7) X (@CPTR)
h; 7. COPIES @ LPTR(27) X (COPIES(27) @ LPTR)
3 8. AUTHOR @ CITPTR X
9. BOOK'NO @ CPTR X (BK'NO not part of
type CITATION)
10. DATE @ IPTR X
11. DATE @ (LOC(CATALOG(3))) X
12. COPIES @ (LOC(BOOK'STORE(4))) X (COPIES(4) @
: (LOC (BOOK'STORE)))

POINTER TYPE-DECLARATIONS

A pointer type-declaration creates a template which may then be
referred to by name to describe an item as having those attributes. The
form is

TYPE item-type-name type-description;
Examples

TYPE HEADPTR P;

TYPE BOTTOMPTR P LOWER;

ITEM HPTR HEADPTR;

ITEM TOPPTR HEADPTR = NULL;

CONSTANT ITEM ENDPTR BOTTOMPTR = NULL;

ITEM BPTR BOTTOMPTR;

1081-1 5:2-11

SECTION 3

SUMMARY

POINTERS

A general form of an item-declaration is:

type-description ce .
[CONSTANT | ITEM name { ¥ES7CFS-r B0) litem-preset];
A pointer type-description is of the form:
P [type-name]

A pointer, like any other item, may be declared with a previously
declared item-type-name.

The value of a pointer is a memory address.
A pointer is either typed or untyped.

A pointer-qualified reference is used to access components of tables
or blocks declared using a type-name. The form of a pointer-qualified
reference is:

name [(subscript-list)] dereference

Dereference is of the form:

pointer-name
@ ((pointer-formula))

NOTES: Name must be a component of the type to which
the pointer points. The pointer must not be an untyped

poin ter.

THE LOC FUNCTION

The LOC function returns the machine address of its argument. The
form is:
LOC (argument)

The LOC function returns a typed pointer if argument is declared

with a type-name.

The LOC function is a pointer expression whose result may be
assigned to a pointer variable or used in a dereference.

5:3-2

Rl S e v =

THE JOVIAL (J73) WORKBOOK

VOLUME ¢
SUBROUTINES

1081-1

April 1981

This material may be reproduced by
and for fthe US Government pursuant
to the copyright license under DAR
Clause 7-184.9(a) (1977 APR).

Submitted to

Department of the Air Force
Rome Air Development Center
I1SIS
Criffiss Air Force Base, NY 13441

Prepared by
SofTech, Inc.

460 Totten Pond Road
Waitham, MA 02154

©Copyright, SofTech, Inc., 1981

T kANt I 18 it I S ey Mt N R+ etV P e Ly L

T T T T P ey

PREFACE

This workbook is intended for use with Tape 6 of the JOVIAL (J73)
Video Course. Its purpose is to elaborate upon and reinforce concepts

and language rules introduced in the videotape.

The definition, invocation and termination of subroutines are
discussed in this workbook. Addressed in detail are procedures,
functions, parameterization, the use-attribute and parameter binding,
with several examples and exercises. The final section is a summary of

the information presented herein.

Section

10

1081-1

TABLE OF CONTENTS

SYNTAX

INTRODUCTION
SUBROUTINE-DEFINITION
SUBROUTINE INVOCATION
SUBROUTINE TERMINATION
PARAMETERIZED SUBROUTINES
PARAMETERIZED SUBROUTINE INVOCATION
PARAMETER BINDING
USE-ATTRIBUTE

ABNORMAL TERMINATIONS
SUMMARY

6 :iii

Page
6:iv

6:1-1

AD=AL108 527 SOFTECH INC WALTHAM
THE JOVIAL (J73) 'ORKMK VOLUME J. INTEGER AND FLOATING ’OINT-!TC(U)
NOV 81 F30602=79=C=0080
UNCLASSIFIED RADC=TR+81=333=V0L~1

, INNENERRNAND

E

===
Indl R
N

Iy
fliL =
s s

153

4 o
EEER

=
N
o

B

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 &

SYNTAX

The syntax conventions used in the JOVIAL (J73) Video Course
and workbook are as follows:

Syntax

[some-feature]

{one | other}

his-one
that-one

letter ...

(letter), ...

thls—one
that-on .)]
+ another

Brackets indicate an
optional feature.

Braces with a vertical
bar indicate disjunction-
a choice between
alternatives.

Braces with each feature

on separate lines indicate

disjunction - a choice
between alternatives.

The sequence '...'
indicates one or more
repetitions of a feature.

The sequence ",.."
following a comma (or a
colon) indicates one or
more repetitions of the
feature separated by
commas (or colons).

Syntax symbols may be
combined.

Sample Expansions

some-feature
OR
nothing

one
OR
other

this-one
OR
that-one

letter
letter letter
letter letter letter

(letter)
(letter) (letter)
(letter) (letter) (letter)

this-one + (another)
that-one + (another)
+ (another)

SECTION 1
INTRODUCTION

SOFlecH

INTRODUCTION

The form of the main JOVIAL program module is:
START PROGRAM name

BEGIN

[declaration ...]

executable statement ...

[subroutine-definition ...]

END

[subroutine-definition ...]
TERM

The main program module combines declarations of data, executable
statements, and subroutine-definitions in a single file that can be compiled,
linked to other modules (if necessary), and executed.

A subroutine is like a small program in the sense that it also
contains a declaration section, an executable portion and possibly other
subroutines nested within it. They may be used in a program to provide
modularity. A subroutine may be used to perform a similar sequence of
actions at several different points within a complete program.

Subroutine-definitions can appear in two places, before and after
the END. They are optional in both places; if subroutines are needed,
then they must be included. The subroutine-definitions before the END
are called "nested, " and those after END are called "non-nested.” Only
non-nested subroutines can be designated as external by the use of the
reserved word DEF. External subroutines are described in Workbook 8.

1081-1 6:1-1 smrem

START
PROGRAM SEARCH;
BEGIN
TYPE KEY STATUS (V(RED), V(GREEN), V(YELLOW));
TYPE DBASE TABLE (1000);
BEGIN
ITEM CODE KEY:
ITEM VALUE U;
END’
TABLE DATA DBASE;
! ITEM CURVAL U;
: GETVALUE (DATA):
| CURVAL = RETRIEVE (V(RED));
PROC RETRIEVE (ARG1) U;
BEGIN
ITEM ARG1 KEY;
FOR | : 0 BY 1 WHILE | <= 1000;
IF CODE (1) = ARG1;
RETRIEVE = VALUE (1);
ERROR (20);
END
END 1
DEF PROC GETVALUE (ARGTAB);
: BEGIN
TABLE ARGTAB DBASE;
END
; DEF PROC ERROR (ERRNO);
! BEGIN
ITEM ERRNO U;
END
TERM
Figure 1-1. Main-program-module complete with Subroutines ,

1081-1 6:1-2

T

T Ty

T

PRI AU € S m i e -

This main-program-module consists of a program-body and two non-
nested-subroutines. The program-body contains two type-declarations, a
table-declaration, an item-declaration, two executable statements, and a
nested subroutine-definition.

1081-1

3
4
§
&
]
1
K
!
g

SECTION 2

SUBROUTINE-DEFINITION

SOFTecH

e Ot s it e ea T — D R

SUBROUTINE-DEFINITION

A subroutine is either a procedure or a function.

A subroutine-definition defines the subroutine name and the
statements to be executed (subroutine-body).

A form of a subroutine-definition for a procedure is:
PROC name [use-attribute] [(formal-list)] ;
] subroutine-body H

% A form of a subroutine-definition for a function is:

PROC name [use-attribute] [(formal-list)] item-type-
description;

subroutine-body

A simple subroutine-definition contains the word PROC, the name J
of the procedure or function and the subroutine-body, which consists of
declarations, executable statements, and perhaps nested subroutines.

3

E A function-definition is distinguished from a procedure-definition H
: by the presence of an item-fype—description. A function returns a result
with those attributes defined by the item-type-description.

The square brackets indicate that use-attribute and the paren-
F o thesized list of formal parameters can be omitted. Use-attribute
: indicates whether the subroutine is recursive or reentrant. The compiler
uses this attribute to allocate data within the procedure properly.
Use-attribute and the parameters are described in detail in subsequent
sections,

The subroutine-body consists of a BEGIN/END pair surrounding
local declarations, at least one executable statement and definitions q

of any local subroutines used in the subroutine-body.

1081-1 6:2-1 SWI.ECH

g 55 LRGSO i or. oA A O SIS s i O

R S A S ekt ey 7

Figure 1-1 contains two examples of procedure subroutine-definions,
GETVALUE and ERROR, and one function subroutine definition, RETRIEVE.
GETVALUE has one formal-parameter, ARCTAB of type DBASE. ERROR
has one formal-parameter, ERRNO. The function RETRIEVE returns a
result of type U BITSINWORD-1 associated with the name RETRIEVE.
(BITSINWORD-1 is the default size if the integer size is omitted from the
item-type-description.)

1081-1 6:2-2

e bt e e T S AME S g 4 e ek M r e ¥ BRI R3] ST,

SECTION 3
SUBROUTINE INVOCATION

SOFlecH

SUBROUTINE INVOCATION

At some point, if a subroutine is to be executed, it must be

invoked. This is done by calling the subroutine.

If the subroutine is a procedure, the subroutine is invoked by
a procedure-call-statement. The form is:

procedure-name [actual-parameter-list] [abort-phrase];
The abort-phrase is discussed in Section 9.

_ If the subroutine is a function, the subroutine is invoked in a
formula by a function-call. The form is:

function-name [actual-parameter-list]

Control never passes through a subroutine-definition unless the sub-
routine is called in a statement.

Figure 1-1 contains three calling statements for subroutines.
GETVALUE (DATA) is a procedure-call-statement which invokes the
procedure GETVALUE a.nd. passes the actual-parameter DATA. Note
that the formal-parameter ARGTAB and the actual-parameter DATA have
the same table-type-description. RETRIEVE (V(RED)) is a function-
call and ERROR(20) is another example of a procedure-call-statement.

The attributes of the formal-parameter-list and the actual-
parameter-list are discussed in Section 5.

et BRI Tigh it i 1 s NSRRI, g e o 4.

SECTION 4

SUBROUTINE TERMINATION

L

R e e
. ..

SUBROUTINE TERMINATION

Subroutines may be terminated normally or abnormally. A normal
termination of a subroutine means all value-result parameters and the function-
return value will be set (see Section 7). A subroutine may be terminated
normally by:

. execution of the last executable statement of a subroutine-body
® execution of a return-statement

An abnormal termination of a subroutine means the value-result parameters
and the function-return value will not be set. Output parameters passed
by reference may be partially set. Abnormal terminations are discussed

in Section 9.

Consider the following example: !

Procedure Definition: Procedure Call
PROC TRIALTY; statement
BEGIN .
declarations .
executable statements .
END TRIAL1;

When the call to TRIAL1 is encountered, the statements inside TRIAL1

will be executed in succession. When the END is encountered, control

will be transferred to the statement following the subroutine call.

1081-1 6:4-1 SQF"ECH

RETURN-STATEMENT

The return-statement is used to effect a normal return from a
subroutine. When a return-statement is executed, the execution of the
subroutine is terminated, any parameters that have value-result binding
are set, and control returns to the point following the subroutine-call.

The form of a return-statement is:
RETURN ;

Suppose the programmer wants to search for a particular character
string in a table of character strings, wants to stop the search either when
the desired character string is found or when the end of the table is reached.
A return-statement for the case in which the character string match is found
can be used as follows:

PROC SEARCH(TABNAME,STRING:POSITION);

BEGIN

TABLE TABNAM(999);
ITEM TABSTRING C 10;

ITEM STRING C 10;

ITEM POSITION U;

FOR POSITION : 0 BY 1 WHILE POSITION < 1000;
IF TABSTRING(POSITION) = STRING;

RETURN;

NOTFOUND(STRING);

END

If the character string STRING is found in the table TABNAME,
the RETURN is executed and the output parameter POSITION gives the
entry number in the table where the match occurred. If the character
string is not found, the procedure NOTFOUND is called and the output

parameter POSITION contains the value 1000.

A return-statement causes a return only from the subroutine in
which it is given, not from any subroutines in which the subroutine
containing the return is nested.

1081-1 6:4-2

SECTION 5
PARAMETERIZED SUBROUTINES

PARAMETERIZED SUBROUTINES

A subroutine may be used to perform one set of actions on
several different sets of data. That data may be passed into the sub-
routine as parameters.

The form of a parameterized subroutine-definition for a procedure

PROC name (formal-list) ;
subroutine-body
The form of a parameterized subroutine-definition for a function is:
PROC name (formal-list) item-type-description ;
subroutine-body

The formal-list specifies the formal parameters. The form of the formal-
list of parameters is:

[input-formal, ... 1 [: output-formal, ...]

A subroutine may have no formal parameters, just input-formals, just
ot..tput-formals, or both input- and output-formals.

The names of formal parameters in a formal-list must be unique.
Examples

PROC SAMPLE'PROC (SAMPL'IN : SAMPL'OUT);

PROC ALPHABET;

PROC CHANGE (: AMOUNT, COINST'TAB):;

PROC SAMPLE'FUNC (SAMPL'IN) F;

PROC PRIME (NUMBER : FACTAB} B 1;

LW Y e emn smte—— e - — S

(TS D er SRR

Function Definition and Call -- Example

PROC SAMPLE'FUNC (SAMPL'IN)F; This is a function because it
BEGIN is defined with an item-type-
ITEM SAMPL'IN F; description. 1t has an input
SAMPLE'FUNC = (SAMPL'IN ** 2}/ parameter.

2.14;

END

statement This is a function-call. When

this is encountered, the value
of COUNT is copicd into
. SAMPL'IN and the value of
NUMBER = SAMPLE'FUNC (COUNT); SAMPLE'FUNC is assigned in the
. function. When the function is
finished executing, the value of
SAMPLE'FUNC is assigned to

NUMBER.

Procedure Definition and Call -- Example
PROC SAMPLE'PROC (SAMPL'IN : This is a procedure-definition.
SAMPL'OUT); It has an input parameter and

BEGIN an output parameter.

ITEM SAMPL'IN F;

ITEM SAMPL'OUT F;

SAMPL'OUT + (SAMPL'IN ** 2)/

2.14;

END
statement This is a procedure-cail-statement.
. When this statement is encountered,

N . the value of COUNT is copied in

. to SAMPL'IN, the value of NUMBER

SAMPLE'PROC (COUNT : NUMBER); is copied in to SAMPL'OUT. When

. the procedure is finished executing
the value of SAMPL'OUT will be
copied into NUMBER.

. INPUT AND OUTPUT PARAMETERS

The parameters given in a subroutine-definition are called formal
parameters because they represent the parameters for the purpose of
defining the computations to be performed by the subroutine using
the parameters. The parameters given in a subroutine-call are called
actual parameters because they are the parameters for that invocation
of the subroutine,

1081-~1 6:5-2

A formal input parameter designates a parameter that receives a

value from the corresponding actual parameter. A formal output
parameter designates a parameter that receives a value from the
corresponding actual parameter when the subroutine is called and
returns a value to the corresponding actual when the subroutine is
terminated in a normal way. All formal parameters must be declared in
the declarations section of the subroutine-body.

If, in the course of the execution of a procedure, a formal
parameter is used in a context in which its value can be altered, then
it must be declared as an output parameter. That is, the value of a
formal input parameter cannot be changed within a subroutine.

PROC SAMPLE'PROC (IN : OUT);

BEGIN

ITEM IN S;
ITEM OQUT S;

IN = 12; "lllegal statement”
OUT = 12; "Legal statement"
END
The number of input actual parameters in the call must be the
same as the number of input formal parameters in the definition.
Similarly, the number of output actuals must be the same as the number
of output formals.

All parameters must be declared within a subroutine. A formal
input parameter can be a data-object, a‘label, or a subroutine. A formal
output parameter can be a data-name only, Labels as input parameters
are discussed in Section 8.

A formal parameter cannot be declared to be a constant or a type.
Declarations of formal parameters must not contain allocation specifiers
or initial values. Formal parameters cannot be declared to be external.

1081-1 6:5-3 SOFTecH

The data type of an actual parameter must match the data type of
the corresponding formal parameter. The rules for type matching of
actual and formal parameters depend on the data types of the parameters:

Items -- The data type of an actual parameter must be compatible
with the data type of the corresponding formal
parameter.

Tables -- The data type of the actual and formal parameter must
be equivalent. The attributes and allocation order
of all components of the table must be equivalent.

Blocks -- The data type of a block actual matches the data type
of a block formal if (1) the types and order of the
components match exactly, (2) an 'ORDER directive
is either present or absent in both, and (3) overlay
declarations in both blocks have the same effect.

SUBROUTINE DECLARATIONS

If a formal parameter is a subroutine-name, it is declared by a
subroutine-declaration. A subroutine-declaration contains the information
necessary to describe a call on the subroutine.

The form of a subroutine-declaration is:
PROC procedure-name [use-attribute] [(formal-list) |
type-description;
parameter-declaration

If the subroutine has parameters, then a declaration must be
given for each parameter. If the subroutine does not have any parameters,
then a null declaration must be given instead of the parameter declarations.
No other declarations can be given in a subroutine-declaration. Declara-
tions of local data, as well as the executable statements and any local
subroutine-definitions, are not given in a subroutine-declarations; they
can appear only in the subroutine-definition.

If the subroutine-declaration includes a type-description, then

it declares a function; otherwise, it declares a procedure.

As an example of the use of a subroutine parameter, consider the
following:

PROC VERIFY(TAB,SUB1,SUB2:SUM);
BEGIN
TABLE TAB(*);
ITEM TABENT F;

PROC SuUB1;
BEGIN
END
PROC SUB2;
BEGIN
END
ITEM SUM F;
SUM = 0.0;
FOR |1:LBOUND(TAB,0) BY 1 WHILE | <= UBOUND(TAB,0);
BEGIN
{F TABENT(!) <THRESHOLD;

SUB1;
SUM = SUM + TABENT (1) **2;
IF SUM > MAXSUM;

SUB2;
END

Suppose you call the procedure VERIFY as follows:
VERIFY (NEWDATA, LOWDATA,OVERFLOW:NEWSUM);

If an entry within the table NEWDATA is less than THRESHOLD, the
procedure LOWDATA is invoked. [f SUM is greater than MAXSUM,
OVERFLOW is invoked.,

In the following example, ANALYSIS invokes the function ROOT!'
FINDER which in turn calls the function FUNC'OF'Z.

PROC ANALYSIS;
BEGIN

¥
ANSWER = ROOT'FINDER (FUNC'OF'Z, "Find root of FUNC'OF'Z"
-1.0, 1.0);

¥

END

PROC ROOT'FINDER (FUNC, LOBOUND,

HIBOUND) F;
BEGIN
PROC FUNC (XX) F; "Find a root of the
ITEM XX F; FUNCTION, given a lower

ITEM LOBOUND F; bound and an upper bound
ITEM HIBOUND F; inside which a root can be
TEMP = FUNC(LOBOUND); found. "
* " 1 By 4]
END Call to FUNC'OF'Z

PROC FUNC'OF'Z (ZZ) F;
BEGIN
ITEM ZZ F;

FUNC'OF'Z = ZZ ** 3 + 2. * 22
*% 2 +18. * 2Z - 36. ;
END

ASTERISK BOUND TABLE DECLARATIONS

A formal parameter that is a table may be declared with an asterisk
bounds to allow you to write subroutines that don't depend on the actual
bounds of the table.

PROC CLEAR (: TABNAME);
BEGIN
TABLE TABNAME (*, *);
ITEM TABENT U;
FOR | : 0 BY 1 WHILE | <= UBOUND (TABNAME, 0);
FOR J : 0 BY 1 WHILE J <= UBOUND (TABNAME, 1);
TABENT (I, J) =0;
END

The procedure CLEAR may be called for any two-dimensional
table with an entry-description that matches that of the formal parameter.
This procedure sets all items in table TABNAME to zero.

[T

The bounds are determined from the actual parameter when the

subroutine is called. The bounds are treated as unsigned integers and
normalized.

By using the subroutine CLEAR with the following two tables, all
items in each table are set to zero.

TABLE GRAPH (1 : 10, 2 : 20);

ITEM POINT U;
TYPE SEASON STATUS

(V(SPRING), V(SUMMER), V(FALL), V(WINTER));
TABLE WEATHER (88, V(FALL));

ITEM RAINFALL U;

CLEAR (: GRAPH);
CLEAR (: WEATHER);

If one dimension is asteris} boune', ail must be.

No range is
permitted in the declaration such »: (* : 15).

6:5-7/6:5-8

i i

haa’ O Lot e of

EXERCISE ON INPUT AND OUTPUT PARAMETERS

The following program contains nine errors. Locate and specify

what the errors are.

START PROGRAM ERRORS;
BEGIN

ITEM AA U 15;

ITEM BB U 15;

PROC (AA : FUNCA(BB));

PROC FUNCA (CC) U 15;
8EGIN
ITEM CC U 15;
FUNCA = 12;
FUNCB (FUNCA);
END

PROC FUNCB (FF) U 15;
BEGIN
ITEM FF U 15;
ITEM GG U 15;
GG = FUNCB * FF;
END

PROC FUNCC (HH) U 15;
BEGIN]
ITEM HH U 15;
ITEM FUNCC U 15;
FUNCC = HH * HH;
END

PROC PROCA (INA : OUTA);
BEGIN 1
ITEM INA U 15;
ITEM OUTA U 15 = 234;
OUTA = INA;
END

PROC PROCB (INA) C 10;
BEGIN
ITEM INA C 10;
END

PROC SUM (INA, INB : OUTA);
BEGIN
ITEM INA STATIC S 16;
ITEM INB S 16;
ITEM QUTA S 16;
INA = INA + 2;
OUTA = INA + INB;
END
END

END
TERM

1081-1 6:5-9 smrem

T

S,

ANSWERS

The following program contains nine errors. Locate and specify

what the errors are:
START PROGRAM ERRORS:

BEGIN

END
TERM

ITEM AA U 15;
ITEM BB U 15;

PROC (AA : FUNCA(BB));

PROC FUNCA (CC) U 15;
B8EGIN
ITEM CC U 15;
FUNCA = 12;
FUNCB (FUNCA);
END

PROC FUNCB (FF) U 15;
BEGIN
ITEM FF U 15;
ITEM GG U 15;
GG = FUNCB * FF;
END

PROC FUNCC (HH) U 15;
BEGIN
ITEM HH U 15;
ITEM FUNCC U 15;
FUNCC = HH * HH;
END

PROC PROCA (INA : OUTA);

BEGIN
ITEM INA U 15;

ITEM OUTA U 15 = 234;

OUTA = INA;
END

PROC PROCB (INA) C 10;
BEGIN
ITEM INA C 10;
END

PROC SUM (INA, INB : OUTA);

BEGIN

ITEM INA STATIC S 16;

ITEM INB S 16;
ITEM OUTA S 16;
INA = INA +2;

OUTA = INA + INB;

END
END

1081-1

. Actual-output-parameter does not

. lllegal function name as an actual-

. lllegal use of a function name.
. FUNCB not assigned a value to

match formal-output parameter.

parameter,

return,

. lllegal declaration of a function-name.

. lllegal preset of formal-parameter,

. No executable statement present.

lllegal STATIC allocation of formal
parameter,

9. Illegal afteration of input parameter,

6:5-10

SECTION 6

PARAMETERIZED SUBROUTINE
INVOCATION

R AR i 41 ' A e i 2 I TR Ao 2 M A4 it 50ty BN

PARAMETERIZED SUBROUTINE INVOCATION

If the subroutine is a procedure, it is invoked by a procedure-

call-statement. The form is:

procedure-name [(actual-list) | ;

If the subroutine is a function, it is invoked in a formula by a function-
call. The form is:

function-name [(actual-list)]

The formal-list must match the actual-list in number, type, and order of
the parameters, A procedure is invoked by a procedure-call-statement.

Example

statement

SAMPLE'PROC (IN'ARG : OUT'ARG):
XX = ZZ + 4 * OUT'ARG:
3 statement

A function is invoked within a formula by a function-call. It returns a
value.

Example ‘

statement

XX = ZZ + 4 * SAMPLE'FUNC(IN'ARG);
statement

1081-1 6:6-1 SOFlecH

The data type of an actual-input or output parameter must be
equivalent or implicitly convertible to the type of its corresponding formal-
input or output parameter. In addition, the type of a formal-output
parameter must be equivalent or implicitly convertible to the type of its

corresponding actual.

An actual-input parameter may be an item, table, block, statement-

name, or subroutine-name. An actual-input parameter may also be a formula.

An actual-output parameter may be an item, table, or block only.

An actual-output parameter must not be a formula.

NOTE: An actual parameter may be listed as both input
and output, but all formal-names must be unique.

1081-1 6:6-2

SUBROUTINES -- EXERCISES

Given the following declarations and definitions:

ITEM AA F;
ITEM COUNT U;
ITEM SPEED F;
TABLE LIST {1 : 20):
ITEM NUMBER U;
PROC CALCULATE (ARGIN : ARGOUT);
BEGIN
ITEM ARGIN U;
ITEM ARGOUT F;
END
PROC COMPUTE (VARIN) F;
BECIN
ITEM VARIN U;

END
Determine whether the following subroutine-call-statements are correct
or incorrect.

Subroutine-call-statement c

1. CALCULATE (COUNT + 2 : SPEED):
2. CALCULATE (COUNT * 5, SPEED});

3. CALCULATE (COUNT : F(COUNT)):
4, AA = 3. + COMPUTE(COUNT);

5. CALCULATE (U(SPEED) : SPEED);

6. CALCULATE (: COUNT);

7. COMPUTE (3 * COUNT : SPEED);

s 3 SN X TN N il B ——

ANSWERS

Given the following declarations and definitions:

ITEM AA F;
ITEM COUNT U;
ITEM SPEED F;
TABLE LIST (1 : 20);
ITEM NUMBER U;
PROC CALCULATE (ARGIN : ARGOUT);
BEGIN
ITEM ARGIN U;
ITEM ARGOUT F;
END
PROC COMPUTE (VARIN) F;
BEGIN
ITEM VARIN U;

END

Determine whether the following subroutine-call-statements are correct or

incorrect.

Subroutine-call-statement

O

1. CALCULATE (COUNT + 2 : SPEED); X

2. CALCULATE (COUNT * 5, SPEED); X (need 1 in, 1 out)

3. CALCULATE (COUNT : F(COUNT)); X (no formulae for out)

4. AA = 3. + COMPUTE(COUNT); X

5. CALCULATE (U(SPEED) : SPEED); X

6. CALCULATE (: COUNT); X (need 1 in 1 out;
output is type F)

7. COMPUTE (3 * COUNT : SPEED); X (need function-call;

only 1in, zero out)

1081-1 6:6-4

|
|
|
Ll
1

SECTION 7

PARAMETER BINDING

S T N T 2 e

PARAMETER BINDING

BINDING

The way in which a formal parameter is bound depends on its type
and input/output status. JOVIAL (J73) uses three types of binding:

value, value-result, and reference.

A formal input parameter that is an item is bound by value. A
formal output parameter that is an item is bound by value-result. A
formal parameter that is a table or block is bound by reference,

For all three types of binding, actual parameter values or the
location of actual parameter values are evaluated when the subroutine is
invoked and are not reevaluated while the subroutine is being executed.

VALUE BINDING

If a formal parameter is bound by value, it denotes a distinct
object of the type specified in the formal parameter declaration. When
the subroutine is called, the value of the actual parameter is assigned to
that object.

For example, given the following procedure-declaration:

PROC RUNTIMER(ARG1);
BEGIN
ITEM ARG1 U;
FOR 1:0 BY 1 WHILE | < ARG1**2;
CORRELATE(ARGT1,1);
END

And the programmer calls the procedure:
RUNTIMER(CLOCK1);

The formal parameter ARG1 is assigned the value of CLOCK 1 when the
procedure is called.

1081-1 6:7-1 sm.em

VALUE-RESULT BINDING

If a formal parameter is bound by value-result, it denotes a distinct
object of the type specified in the formal parameter declaration to which
the value of the actual is assigned when the subroutine is called. In
addition, when the subroutine is exited normally, the value of the formal
is assigned to the corresponding actual. If the subroutine is terminated
in an abnormal way, the value of the formal is not assigned to the actual.
Abnormal returns from subroutines are discussed in Section 9.

Given the following procedure:

PROC MINMAX(VECTOR:MIN, MAX);
BEGIN
TABLE VECTOR(99);
ITEM V1 U;
ITEM MIN U;
ITEM MAX U;
MIN, MAX = V1(0);
FOR I : 1 BY 1 WHILE | <= 99;
BEGIN
IF V1(1) < MIN;
MIN = V1(l);
IF V1(1) > MAX;
MAX = V1(l);
END
END

And this procedure call:
MINMAX(RETURNS:RMIN, RMAX);

The procedure MINMAX finds the minimum and maximum values in the
table RETURNS and, on completion, sets the value of RMIN to the minimum
value (MIN) and RMAX to the maximum value (MAX).

REFERENCE BINDING

If a formal parameter is bound by reference, the actual parameter
and the formal parameter denote the same physical object. Any change in
the formal parameter entails an immediate change in the value of the
actual parameter.

1081-1 6:7-2

A Ot 1 by, o W I X 3O [S

Suppose the programmer wants to square the items of a table and then
calculate the sum of the pairwise quotients. The item SIZE gives the number
of entries in the table currently in use, SIZE is always an even number,

The following can be written:

PROC MEAN(:ARGBLOCK);

BEGIN

BLOCK ARGBLOCK
BEGIN
ITEM SIZE U;
ITEM SUM U;
TABLE ARGTAB(1:1000);

ITEM VALUE S;

END ‘
SUM = 0;
FOR | : 1 BY 2 WHILE | < SIZE;

BEGIN

IF VALUE(I+1) = 0;

ABORT;
VALUE(1) = VALUE(1) **2;
VALUE(1+1) = VALUE(1+1)**2;
SUM = >UM + VALUE(I) /VALUE(I1+1);
END
END

Suppose STATISTICS is a block that is declared as follows:

BLOCK STATISTICS:
BEGIM
ITEM STATSIZE U = 10;
ITEM STATSUM U;
‘ TABLE STATTAB(999);
' ITEM STATVALUE S = 2,4,3,4,8,6,9,0,11,3;
END

Suppose a call is made to the procedure MEAN with the actual parameter
STATISTICS, as follows:

MEAN(:STATISTICS);

T

The block STATISTICS is bound by reference to the formal para-
meter ARGBLOCK. Each change to SUM results in an immediate change to
STATSUM. Similarly, a change in VALUE(I) results in a change in
STATVALUE(1). If the procediure terminates abnormally as a result of

T TR e e e

SOFlecH

"

3 " o - G PSR S i by i OB WS o <o vt

finding a zero value in the table, STATSUM has the value computed up to
that point and the values of the table STATTAB are changed up to the -
point at which the zero quotient was encountered.

NORMAL AND ABNORMAL TERMINATION

Subroutines may end normally, as discussed in Section 4 or
abnormally (Section 9).

Normal termination means that value-result parameters are copied
out, parameters bound by reference are fully set, and the function return-

value is copied out.

NORMAL TERMINATION PARAMETERS

VALUE-RESULT copied out
REFERENCE set fully
RETURN-VALUE copied out

Abnormal termination means that value-result parameters are not
copied out, parameters bound by reference are set only until the point of
abnormal termination, and the function return-value is not copied out.

ABNORMAL TERMINATION PARAMETERS

VALUE-RESULT not copied out
. REFERENCE partially set
RETURN-VALUE not copied out

1081-1

gy g e <A ammcionls, ol wibOIIAE

PARAMETER BINDING -- EXERCISES

Given the following declarations:

ITEM COUNT U;

ITEM SPEED F;

TABLE STOCKS (1 : 100);
BEGIN
ITEM NAME C 10;
ITEM QUOTE C 6;

END
Name the kind of binding for each parameter and describe what occurs:

Subroutine-calls

1. CALCULATE (COUNT : SPEED);
2. COMPUTE (STOCKS):

3. GETRESULT (: STOCKS);

4, RESULT (NAME(10));

5. PROCESS (COUNT ** 2);

6. ANSWER (: QUOTE (4));

NOTE: Since tables and blocks are bound by reference,
the overhead of copying a long character string is saved
by declaring it in a table or block and passing the table
or block as a parameter,

e SR

I AL

ANSWERS

Given the following declarations:

ITEM COUNT U;

ITEM SPEED F;

TABLE STOCKS (1 : 100);
BEGIN
ITEM NAME C 10;
ITEM QUOTE C 6;

END
Name the kind of binding for each parameter and describe what occurs:

Subroutine-calls

1. CALCULATE (COUNT : SPEED); COUNT - value SPEED - value-
2. COMPUTE (STOCKS); STOCKS - reference result
3. GETRESULT (: STOCKS): STOCKS - reference

4, RESULT (NAME(10)); NAME(10) - value

5. PROCESS (COUNT ** 2); COUNT**2 - value

6. ANSWER (: QUOTE (4)); QUOTE(4) - value-result

1081-1 6:7-6

DGATATER L LT TRIIXETT.MLC L. T TR W T i

F‘
SECTION 8
I

USE-ATTRIBUTE

USE-ATTRIBUTE

E‘ 'A
|
| .r

A recursive subroutine is one that calls itself either directly or

indirectly.

A reentrant subroutine is one that may be used by concurrent

processes.

A programmer must specify if a subroutine is to be used in either a
recursive or reentrant way. The default is neither. The form is: . ﬁ

PROC name [use-attribute] [(formal-list)] [item~-type-description 1 ;
subroutine-body ‘_
The form of the use-attribute is: . ! ﬂ

REC | RENT

for recursive or reentrant procedures respectively.

Example
PROC RFACT REC (ARG) U; b

subroutine-body

REENTRANT SUBROUTINES l
e |

A reentrant subroutine is one that can be called from several !
different tasks. I[f the compiler knows the maximum number of separate
tasks that can invoke a reentrant subroutine in a given system, it can

allocate storage for the subroutine statically. In general, the compiler
oy dynamically allocates storage for reentrant subroutines. Locally-declared
STATIC data is shared among all re-entrant invocations.

Consider the following example:

1081-1 6:8-1 SOFT;
| ecH

TPV AT Re T T T TR R FETRRIVES N T T AT

it~ SR o et Gl A adiias L A ENC LA Lt S

START PROGRAM REENT;
BEGIN

ITEM SA S 12;
ITEM SB S 8;

ITEM GLOB S 12;

TERM

RECURSIVE SUBROUTINES

SA =0; SB = 12; GLOB = 0;

SA = REENA (SB:GLOB):
SA = REENA(SB:GLOB); "CALL TWICE TO TEST STATIC ALLOCATION"
IF SA = 144 AND GLOB = 24;

YRE-ENTRANT FUNCTION WITH STATIC ALLOCATION

AND IMPLICITY RETURN IS CORRECT"

SB=12;

PROC REENA RENT (INA : OUTB) S 8;
BEGIN
ITEM INA S 8;
ITEM OUTB S 7;
ITEM GLOBC STATIC S 8 =0;
GLOBC = INA + GLOBC;
OUTB = GLOBC;
REENA = INA * INA;
END
END

A call on this function with an argument of 6 produces six calls. The
calls can be diagrammed as follows:

PROC RFACT REC (ARQG) U;
BEGIN
ITEM ARG U;
IF ARG <= 1;
RFACT

1;
ELSE

RFACT = RFACT(ARG-1) * ARG; ¥
END ‘

RFACT(6)
First call : RFACT(5) * 6
Second call (RFACT(4) *5) *6

Third call ((RFACT(3) * 4) *5) * 6 |

r e — e e iy =

BT o SE RN

Fourth call (((RFACT(2) * 3) *4) *5) *6

Fifth call ((((RFACT(1) *2) *3) *u4) *5) *6
Sixth call (CCC(1) *2) *3) *u) *5) *6
=720

RFACT illustrates the use of recursion clearly. In practice,
however, a function like this is not written recursively because the
computation is too simple to justify the overhead associated with the
repetitive function calling mechanism. In the above example, dynamically
allocated memory is required for every integer from 1 to the value of
ARG, since there is a separate function call for each of these values.

The function RFACT is obviously recursive because it calls itself.
Some subroutines are less obviously recursive because they call other
subroutines that, in turn, call them. A recursive subroutine is also

re-entrant.
The factorial computation could be done iteratively, as follows:

PROC IFACT (ARG) U;
BEGIN
ITEM ARG U;
ITEM TEMP U;
TEMP = 1;
FOR | : ARG BY -1 WHILE | > 1;
TEMP = TEMP * 1;
IFACT = TEMP;
END

Or, it could be done by a table look-up method.

If REC is present, physical allocation of locally-declared automatic
data will occur dynamically. The data will be allocated and deallocated
when the subroutine is entered and exited, respectively. This assures
that separate copies of the local data will exist for each successive call
in the recursive chain. Locally-declared STATIC data, however, will
be allocated once, and the same storage will be used for all calls of that
subroutine throughout the complete-program.

1081-1

SECTION 9

ABNORMAL SUBROUTINE
TERMINATION

ABNORMAL SUBROUTINE TERMINATION

An abnormal termination of a subroutine means the value-result
parameters and the function-return value will not be set (see Section 7).
Output parameters passed by reference may be partially set.

A subroutine may be terminated abnormally by:

. a goto-statement to a formal-input statement-name
° a stop-statement
° an abort-statement

STATEMENT-NAME DECLARATIONS

If a formal-parameter is a statement-name, it is declared by a

statement-name declaration. The form of a statement-name declaration is:
LABEL statement-name ,... ;

A GOTO statement to a label that is a formal parameter results in
the subroutine being exited and control being sent to the label that is
supplied as the actual parameter.

Statement-name parameters are useful for subroutines that have
more than one possible error exit. For example, consider the following

subroutine:

PROC VERIFY{(TAB,L1,L2:SUM); '
BEGIN
TABLE TAB(*);
ITEM TABENT F;
LABEL L1,L2;

ITEM SUM F;

SUM = 0.0;

FOR | : LBOUND(TAB,0) BY 1 WHILE | <= UBOUND(TAB,0);
BEGIN
IF TABENT(I) < THRESHOLD;

GOTO L1;
SUM = SUM + TABENT (1) **2
IF SUM > MAXSUM;

GOTO L2; a
END '

END

1081-1 6:9-1 SOFlecH

NOTE: This is the only case when labels must be declared.

Suppose the programmer calls the procedure VERIFY as follows:
VERIFY (NEWDATA,LERROR1,ERROR5:NEWSUM);

The procedure VERIFY is terminated abnormally under two separate
conditions. If an entry in NEWDATA is less than THRESHOLD, the
procedure is terminated abnormally and control is sent to the label
ERROR1, If SUM is greater than MAXSUM, the procedure is terminated
abnormally and control is sent to the label ERROR5.

The use of a statement label formal parameter to exit a subroutine
constitutes an abnormal termination from the subroutine.

Statement-Names as Parameters -- Examples

PROC RANGE (VELOCITY,L1, L2) S;

BEGIN

ITEM VELOCITY S;

LABEL L1, L2;

RANGE = 0;

CASE VELOCITY;
BEGIN
(DEFAULT) : GOTO L1;
(0 : 100) : RANGE = VELOCITY;
(101 : 199) : GOTO L2;
END

END

' The subroutine could be used in the following way:
FOR | : 1 BY 1 WHILE [<= 1000;

F BEGIN
» . NOTE = 'WITHIN ACCEPTABLE VALUES';
F XX = RANGE(SPEED, ERROR1, ERROR2);

< ERROR1: Egll:rE = 'BELOW ACCEPTABLE VALUES';
F ERRORZ2: El)(()IT.'rE = 'ABOVE ACCEPTABLE VALUES';
’ END
t

1081-1 6:9-2

. [EpN e
it i i, . MR, T T Y N TR TERR O ST

STOP-STATEMENT

The stop-statement causes the execution of the program to
stop. The form is:

STOP [stop-code] ;

The value of stop-code is supplied to the operating system and
interpreted in a machine-dependent manner.

A stop-statement may be used anywhere within a program. When
it is used in a subroutine, value-result parameters and the function-return
value are not set. Parameters passed by reference may be partially set.

Stop-code is an integer formula that may take on the following
value defined using implementation parameters:

MINSTOP <= stop-code <= MAXSTOP

ABORT-STATEMENT AND ABORT-PHRASE

The abort-statement is of the form:
ABORT ;

The abort-statement within a subroutine works with the abort-phrase on
a procedure-call-statement to produce an abnormal exit from a procedure
and transfer control to another statement. It is mostly used for error
processing.

If an abort-statement is executed, value-result parameters are not
set.

A procedure-call-statement may have an abort-phrase:
procedure-name [(actual-list)] [abort-phrase] ;
The form of the abort~phrase is:

ABORT statement-name

NOTE: A function-call does not have an abort-phrase.

When an abort-statement is executed, the subroutine is terminated,
If the call to the subroutine has an abort-phrase, control is transferred
to the statement-name given in that phrase. |If the call to the subroutine
does not have an abort-phrase, the calling subroutine is terminated
abnormally similar to STOP.

Abort-Statement -- Example

BEGIN
éALCULATE (LENGTH : ESTIMATE) ABORT RECOVERY;

RECOVERY : STOP;

END
PROC CALCULATE (IN : OUT);
BEGIN
IF IN < 0 |
ABORT: ;

CUT =IN * 3.2;

END

SECTION 10

SUMMARY

SOFlecH

SUMMARY

A subroutine may be used to add structure to a program or to
repeat a series of actions at several points in a program. A subroutine
may be a procedure or a function. A subroutine-definition defines a
subroutine. The form is:

PROC name [REC | RENT] [(formal-list) 1 [item-type-description] ;
subroutine-body

If the item-type-description is present, the subroutine is a function.
Otherwise, it is a procedure.

Use-attribute has the form:
REC | RENT

If a subroutine is used in a recursive or reentrant way, it must be
declared with the appropriate use-attribute.

The formal-list has the form:

(input-formal, ...
[input-formal, ...] : output-formal,)

Input-formals may be:

(item—name | table-name | block-name
statement-name | subroutine-name

Output-formals may be:

(item—name | table-name | b|ock-name)

NOTE: A formal parameter may not be named both as an
input- and output-formal but an actual parameter may.

1081-1 6:10-1 SOFlecH

A procedure is invoked with a procedure-call-statement. The form

procedure-name [(actual-list)] [abort-phrase] ;

A function is invoked in a formula with a function-call. The form is:
function-name [(actual-list)]

The actual-list has the form:

input-actual, ...
[input-actual, ...] : output-actual,)

Input-actuals may be:

(item—name | table-name | block—name)
statement-name | subroutine-name

Output-actuals may be:
(item-name | table-name | block—name)

The number, type, and order of the actual parameters must match
the formal parameters. An input-actual may be a formula, an output-
actual must not.

Parameter Binding:

An item input-actual parameter is bound by value to its corresponding
formal parameter (copy-in).

An item output-actual parameter is bound by value-result to its
corresponding formal parameter (copy-in, copy-out)

A table or block input- or output-actual is bound by reference to
its corresponding formal parameter,

All formal parameters must be declared in a subroutine-definition.

A table may be declared with asterisk bounds. The actual bounds
are treated as integers and begin at zero.

1081-1 6:10-2

e et

T LA s i S5 2 S DA AN TS SRt A AN R SN BARSOALIAI t': K b 541 N i, AN 5 5 9 = i L

l !

The form of a statement-name declaration is:

LABEL statement-name, ... ;

The form of a subroutine- declaration is:

PROC NAME [use-attribute] [(formal-list) [item-type-
description] ;
parameter-declaration

All formal parameters must be declared in the parameter-deciaration.
If there are no parameters, a null-declaration must be given.

If a subroutine is terminated normally, all value-result parameters
and parameters passed by reference are set. A subroutine may be
terminated normally by:

° the execution of the last statement

o a return-statement
A return-statement returns control to the point of the call. The form
of the return-statement is:

RETURN ;

If a subroutine is terminated abnormally, value-result parameters
will not be set and parameters passed by reference may be partially set.

A subroutine may be terminated abnormally by:

[] a goto-statement to a formal-input statement-name i

| [a stop-statement

o an abort-statement
A stop—statemeht stops execution of the program. The form of a stop-
statement is:

!
. STOP [stop-code | ;
The form of an abort-statement is:

ABORT ;

1081-1 6:10-3 SOFlecH

CRant A o Bk o lilansd
[[,

The form of the abort-phrase is:

ABORT statement-name

The abort-phrase appears on a procedure-call-statement. If an abort-
statement is executed, that procedure is terminated, control returns to
the point of call, and control is transferred to the statement labelled by
the statement-name in the abort-phrase. If there is no abort-phrase,
that procedure is terminated, control returns to the point of call, and
control is transferred to the statement labelled by the statement-name
in the abort-phrase. This process continues until an abort-phrase is
encountered or the program is terminated.

1081-1 6:10-4

THE JOVIAL (J73) WORKBOOK

VOLUME 7
BUILT-IN FUNCTIONS

1081-1

April 1981

This material may be reproduced by
and for the US Government pursuant
to the copyright license under DAR
Clause 7-104.9(a) (1977 APR).

Submitted to

Department of the Air Force
Rome Air Development Center
Is!1S
Griffiss Air Force Base, NY 13441

Prepared by
SofTech, Inc.

460 Totten Pond Road
Waltham, MA 02154

©Copyright, SofTech, Inc., 1981

PREFACE

This workbook is intended for use with Tape 7 of the JOVIAL (J73)
Video Course. Its purpose is to elaborate upon and reinforce concepts
and language rules introduced in the videotape.

This workbook addresses 17 built-in functions which are pre-
defined by the language and may be called from anywhere in a JOVIAL
(J73) program. The final section is a summary of the information

presented in this segment.

1081-1

TABLE OF CONTENTS

Section Page I
; SYNTAX 7:iv j
1 THE LOC FUNCTION 7:1-1 1
| 2 THE ABS FUNCTION 7:2-1
: 3 THE SGN FUNCTION 7:3-1
t 4 THE BIT FUNCTION 7:4-1
: 5 THE BYTE FUNCTION 7:5-1
6 THE BIT AND BYTE PSEUDO-VARIABLES 7:6-1
7 THE REP FUNCTION 7:7-1 "
k 8 SHIFT FUNCTIONS 7:8-1
9 S1ZE FUNCTIONS 7:9-1
10 THE NWDSEN FUNCTION 7:10-1
1 STATUS INVERSE FUNCTION 7:11-1
12 THE BOUNDS FUNCTION 7:12-1
13 THE BOUNDS FUNCTION 7:13-1
‘ 14 SUMMARY OF BUILT-IN FUNCTIONS 7:14-1

!
, 1081-1 7:iii soFrECH

W oo 2 i O PR s v B S

an tax

3 [some-feature]

{one | other}

his-one
that-one

letter ...

(letter), ...

thls -one
that—one
+ another

1081-1

SYNTAX

Meaning

Brackets indicate an
optional feature.

Braces with a vertical
bar indicate disjunction-
a choice between
alternatives.

Braces with each feature
on separate lines indicate
disjunction - a choice
between alternatives.

The sequence '...'
indicates one or more
repetitions of a feature.

The sequence "..."
following a comma (or a
colon) indicates one or
more repetitions of the
feature separated by
commas (or colons).

Syntax symbols may be
combined.

The syntax conventions used in the JOVIAL (J73) Video Course
and workbook are as follows:

Sample Expansions

some-feature
OR
nothing

one
OR
other

this-one
OR
that-one

letter
letter letter
letter letter letter

(letter)
(letter) (letter)
(letter) (letter) (letter)

this-one + (another)
that-one + (another)
+ (another)

T T PR el M ki I 5 - g i 0 e R - AT 0kt e e I e D . At o A s = TS R T Kl . ahe e e

SECTION 1

THE LOC FUNCTION

SOFlecH

e e P

THE LOC FUNCTION

The LOC function returns a pointer to the machine address of its
argument.

It has the form:
LOC (argument)

The argument of the LOC function can be a data object name, a
statement-name, or a subroutine-name. The LOC function returns a
pointer value. If the argument is declared using a type-name, the LOC
function returns a typed pointer whose type-name is the type given in
the declaration. Otherwise the LOC function returns an untyped pointer.

The LOC function is used most often to obtain a value for a

pointer to be used in a pointer-qualified reference.

If the argument of a LOC function is a statement-name or a
subroutine-name, the LOC function returns the machine address used to
access the designated statement or subroutine. The LOC function may
not be used to obtain the address of a built-in function.

The LOC of a subroutine whose name appears in an inline-
declaration or of a statement-name within an inline subroutine is
implementation defined.

The LOC Function -- Examples

Given the declarations:
TYPE GRID TABLE;
BEGIN
ITEM XCOORD U;
ITEM YCOORD U;
END

1081-1 7:1-1 SOFTECH

minnciisthiedhtne

TABLE BOARD(20,10) GRID;

TYPE SQUARE TABLE(20,10) GRID;
TABLE CHECK SQUARE;

Function Call Result

LOC(BOARD) An untyped pointer that contains the :
address of BOARD.

LOC(BOARD(3,7)) A pointer of type GRID that contains
the address of the specified entry
of BOARD.

LOC(CHECK) A pointer of type SQUARE that
contains the address of the table
CHECK.

1081-1 7:1-2

THE LOC FUNCTION -- EXERCISES

Given the declarations:
TYPE GRID TABLE:
BEGIN
ITEM XCOORD U;
ITEM YCOORD U;
END
3 TABLE BOARD(20,10) GRID;
” TYPE SQUARE TABLE(20,10) GRID;
TABLE CHECK SQUARE.

Are the following pointer-qualified references correct or incorrect?

Reference Correct. Incorrect

XCOORD(3,7) @ (LOC(BOARD))
XCOORD @ (LOC(BOARD(3,7)))
XCOORD(3,7) @ (LOC(CHECK))

3

1081-1 7:1

 —————

SR

ANSWERS

Given the declarations:
TYPE GRID TABLE;
BEGIN
ITEM XCOORD U;
ITEM YCOORD U;
END

TABLE BOARD(20,10) GRID;

TYPE SQUARE TABLE(20, 10} GRID;

TABLE CHECK SQUARE;

Are the following pointer-qualified references correct or incorrect?

Reference

XCOORD(3,7) @ (LOC(BOARD))
XCOORD @ (LOC(BOARD(3,7)))
XCOORD(3,7) @ (LOC(CHECK))

1081-1 7:1-4

X (LOC(BOARD)
is untyped, cannot
dereference untyped

Correct Incorrect
X
pointer)
X

SECTION 2

THE ABS FUNCTION

SOFlecH

THE ABS FUNCTION

The ABS function produces a value that is the absolute value of
its argument.

The form is:
ABS (numeric-formula)

The result is equal to -(numeric-formula) if the numeric-formula
is negative and equivalent to +{numeric-formula) otherwise., The type
of the result is the type of the numeric formula preceded by prefix
operator. For example, the type of the absolute value of a single-word
unsigned integer formula is a single-word signed integer.

The type of the absolute value of a floating point formula is the
type of the larger precision operand.

Examples
Given the following item-declarations:
ITEM TIME U 5 = 2;
ITEM VELOCITY F

2.356;

ITEM RANGE S 20 26;

If BITSINWORD is 16 and the items have their preset values at
the time the function-calls are executed, ABS produces the following

results:

Function call Function Value Type
ABS(RANGE) 25 S 3

ABS(TIME) 2 S15

ABS(RANGE/TIME) 13

7:2-1/7:2-2

EXERCISES

Given the following declarations:
ITEM LENGTH U = 20;

ITEM HEIGHT U = 15;
Assuming the items have their preset values and BITSINWORD = 16,

give the result and type of the following function calls:

Function Call Result Type
ABS(LENGTH)

ABS(HEIGHT-LENGTH)

-f-»-a«.-..«.-mm» et . " » s
i A M SR ki o s 2 . A S AN . 0 i

ANSWERS

Given the following declarations:
ITEM LENGTH U = 20;
ITEM HEIGHT U = 15;

Assuming the items have their preset values and BITSINWORD = 16,
give the result and type of the following function calls:

Function Call Result Type
ABS(LENGTH) 20 S 15
ABS(HEIGHT - LENGTH) 5 S 15

1081-1 7:2-4

SECTION 3

THE SGN FUNCTION

st L e e il

i e ot

THE SGN FUNCTION

The SGN function returns an integer that tells whether the value
of the numeric-formula is negative, positive or zero.

The form is:
SGN (numeric-formula)

The result is a signed one-bit integer (S 1) that is 1 if the value
is positive, 0 if zero, and ~1 if negative.

Examples
Given the following item-declarations:
ITEM TIME U 5 = 2;
ITEM VELOCITY F

2.356;

ITEM RANGE S 20 -25;

If the items have their preset values at the time the function-calls
are executed, the following results:

Function call Function value

SGN(VELOCITY) +1

SGN(RANGE) -1

SGN(TIME/RANGE) 0 or -1 (implementation dependent

truncation)

7:3-1/7:3-2

SCGN FUNCTIONS -- EXERCISES

Given the following declarations:

ITEM LE~nuTH U = 20;
ITEM HEIGHT U = 15;
ITEM WIDTH U = 5;

Assuming the items have their preset values and BITSINWORD =

give the result and type of the following function calls:
Function call Result
SGN(LENGTH)

SGN(HEIGHT - LENGTH)

SGN(LENGTH - 4 * WIDTH)

16,

Type

T i v A e S i (R ¢ R S g 44 5 n g P vTEE———— —

ANSWERS

Given the following declarations:
ITEM LENGTH U = 20;

ITEM HEIGHT U = 15;

ITEM WIDTH U = 5;

Assuming the items have their preset values and BITSINWORD = 16,
give the results and type of the following function calls:

Function call Result Type
SGN(LENGTH) +1 S1
SGN(HEIGHT - LENGTH) -1 S1
SGN(LENGTH - 4 * WIDTH) 0 S1

1081-1 7:3-4

SECTION 4

, THE BIT FUNCTION
3

SOFlecH

THE BIT FUNCTION

The BIT function selects a substring from a bit-formula.
The form is:
BIT (bit-formula , first-bit , length)

The BIT function returns a string of bits with a size attribute equal
to the size attribute of the bit-formula argument. Padding, if necessary,
is done on the left.

First-bit and length are integer-formulae. First-bit indicates the
bit at which the substring to be extracted starts. Length specifies the
number of bits in the substring. Bits in a bit string are numbered from
left to right, beginning with zero. Length must be greater than zero.
The sum of first-bit and length must not exceed the length of the bit-
formula.

Example

ITEM MASK B 6 = 1B'011010';

Function call Returns
BIT(MASK, 4, 1) 1B8'000001"
BIT(MASK, 2, 4) 1B'001010'

NOTE: Bits are numbered left to right starting with

zero,

v

1081-1 7:4-1/7:4-2 SOF'-ECH J

THE BIT FUNCTION -- EXERCISES

Given the following declarations:

ITEM MASK B 10

1B'0011100111';
ITEM FLAGS B 6

3B'77';
ITEM REPRESENTATION B 16 = 4B'FFFF';

Assuming the declared items have their initialized values, give the
results and types of the following function calls:

Function call Result Type
BIT(MASK, 2,2)
BIT(FLAGS,1,3)

BIT(REPRESENTATION,1,12)

SOFlecH

ANSWERS

Given the following declarations:

ITEM MASK B 10

1B'oo11100111';

ITEM FLAGS B 6 3B'77';
ITEM REPRESENTATION B 16 = u4B'FFFF';

Assuming the declared items have their initialized values, give the
results and types of the following function calls:

Function calls Result Type
BIT(MASK,2,2) 1B'0000000011' B 10
BIT(FLAGCS,1,3) 1B'000111! B 6 (or 3B'070')

BIT(REPRESENTATION,1,12) 1B'0000111111111111! B 16 (or 4B'OFFF')

. |

1081-1 7:4-4

T

= iz S G £ N

SECTION 5

THE BYTE FUNCTION

SOFlecH

THE BYTE FUNCTION

The BYTE function selects a subs:ring from a character formula,
Its form is:
BYTE (character-formula , first-character , length)

The BYTE function returns a string of bytes with a size attribute
equal to the size attribute of the character formula argument. Padding,
if necessary, is done on the right. Characters are numbered left to
right starting with zero. First-character and length are integer formulae.

Example

ITEM WORK C 7 = 'SOFTECH';
Function call Returns Type
BYTE(WORK,0,4) 'SOFT ! c7
BYTE(WORK,®6,1) 'H ! c7

The value of a byte function may be assigned to the value of any

character-item.
For example:

ITEM LETTER C 1;
LETTER = BYTE(WORK,6,1);

The value of LETTER is the single character that was selected
from WORK by using the BYTE function.

1081-1 7:5-1/7:5-2 SOF"ECH

THE BYTE FUNCTION -- EXERCISES

Given the declarations:

ITEM NAME C 6 = 'JOVIAL";

ITEM ID C 9 = 'PROG LANG';

Assuming the items have their initialized values, give the results

and types of the following function calls.
Function call Result Type ‘
BYTE(NAME, 3, 1) i

BYTE(ID,S,3)

; SOFTecH

1081-1 7:5

ANSWERS

Given the declarations:
ITEM NAME C 6 = 'JOVIAL';
ITEM ID C 9 = 'PROG LANG';

Assuming the items have their initialized values, give the results
and types of the following function calls.

Function call Result Type
BYTE(NAME,3,1) ' ! C6
BYTE(ID,6, 3) ‘ANG ! c9

1081-1 7:5-4

et -

SECTION 6

THE BIT AND BYTE
PSEUDO-VARIABLES

SOFlecH

e e b W o e T s ™ i < ot

1)

1081-1

be assigned a value. The BIT and the BYTE function may be used as
pseudo-variables.

Examples

BIT AND BYTE PSEUDO-VARIABLES

A pseudo-variable is a function that may be used as a target and

ITEM FLAGS B 3 = 1B'111";
The assignment-statement:

BIT(FLAGS,0,1) = 1B'0';

changes the value of FLAGS from 1B'111' to 1B'011',
That is, it changes the first bit in the value of the item.
ITEM SPORT C 8 = 'SWIMMING';
The assignment-statement:

BYTE (SPORT, 1, 7) ='KIING ';

changes the value of SPORT from 'SWIMMING' to 'SKIING ‘.

NOTES: The BIT pseudo-~variable must be assigned a value
of type B. The BYTE pseudo-variable must be assigned a
value of type C.

7:6-1/7:6-2 SOFlecH

THE BIT AND BYTE PSEUDO-VARIABLES -- EXERCISES

Given the following declarations:
ITEM MASK B 10 = 1B"1111111111°;
ITEM DESCRIPTION C 21 = 'THIS IS A DESCRIPTION’;

ITEM STATE C 13 = 'MASSACHUSETTS';

Assuming the items have their initialized values, give the value of
the item after execution of the statements with the pseudo-variables:

Statement Value

BIT(MASK,1,1) = 18'0';

BYTE(DESCRIPTION, 10,10) = 'CODE';
BYTE(STATE, 4,9) ="'.";

f»

R

1081-1 7:6-3 SOFlec

T P e g g

ANSWERS

Civen the following declarations:
ITEM MASK B 10 =1B'1111111111;
ITEM DESCRIPTION C 21 = 'THIS IS A DESCRIPTION';

ITEM STATE C 13 = 'MASSACHUSETTS';

Assuming the items have their initialized values, give the value of

the item after execution of the statements with the pseudo-variables:

Statement Value

BIT(MASK,1,1) = 1B'0'; B'1011111111"
BYTE(DESCRIPTION,10,10) = 'CODE'; 'THIS IS A CODE N'
BYTE(STATE,4,9) ='.'; 'MASS. !

1081-1 7:6-4

B SR

St e

SECTION 7

THE REP FUNCTION

SOFlecH

THE REP FUNCTION

A REP function returns the machine representation of a data object.
It converts a data object to a bit string whose size is the actual number of
bits occupied by the object.

The form is:
REP (name)

A REP function may be applied to named variables only. It may not
be applied to tables with * bounds or to entries in parallel tables. A REP
function may be used as a pseudo-variable.

REP Function -- Examples

1) Given the declaration:
ITEM SPEED U = 2;
If BITSINWORD is 16 and all items are aIIocated> a full word,
REP(SPEED) yields 1B'0000000000000010"'
Given the declaration:
ITEM NAME B 16 - 4B'FFFF';

If BITSINWORD is 9, BITSINBYTE is 4, and F is represented as
1B'1111'. Each word contains two bytes as follows:

XXXXYYYY0 where x indicates the first byte,
y indicates the second byte, and
0 indicates a filler bit. (Place-
ment of filler bits is implemen-
tation dependent.)

REP(NAME yields 1B'11111t11101111111110"
(*B 16*) (NAME) yields 1B"111111111111im1y?

1081-1 7:7-1 SOF'-ECH

A At e o % 23

a2 i

e N b

2) BITSINWORD is 9, BITSINBYTE is 4, and F is represented as
1B'1111';

ITEM NAME B 16 = 4B'FFFF'; b
The assignment-statement:
REP(NAME) = 3B'750750'; i

changes the value of NAME from 1B'111111110111111110'
to 1B'111101000111101000';

1081-1 7:7-2

SECTION 8

SHIFT FUNCTIONS

SOFlecH

THE SHIFT FUNCTIONS :
1

The shift functions perform a logical shift of a bit formula. Two

shift functions are defined, one for left shifting and one for right shifting.
i

The forms are:

SHIFTL (bit-formula , shift-count) for left shift
SHIFTR (bit-formula , shift-count) for right shift

The value returned by the shift functions is the bit-formula shifted

as riany positions as specified by shift-count. Its type is the same as the

type of bit-formula.

R e YO .

Examplie
ITEM SUBMASK B 4 = 1B'1101';
SHIFTL(SUBMASK, 2) returns 18'0100'

SHIFTR(SUBMASK, 3) returns 18'0001'

NOTES: A logical shift loses the bits that are shifted out
Shift-count must be a

_E and fills vacated bits with zeros.
i non-negative integer formula. A shift-count of zero means
no shift.
Example

SUB = SHIFTR (SUBMASK, 3);

7:8-1/7:8-2 SOFlecH

1081-1

SHIFT-FUNCTIONS -- EXERCISES

Given the declarations:
ITEM MASK B 10 = 1B'0101010101';
ITEM CODE B 6 = 3B'77';

Mark each of the following function calls correct(c) or incorrect
(1). Assuming the items have their initialized values, give the result and
type for those functions that are correct.
Function call C | Result Type
SHIFTL(MASK, 5)
SHIFTL(MASK,-2)
SHIFTR(CODE, 0)

SHIFTR(MASK, 3)

1081-1 7:8-3 5°FI'ECH

ANSWERS

Given the declarations:

ITEM MASK B 10
ITEM CODE B 6 =

Function call
SHIFTL(MASK, 5)
SHIFTL(MASK,-2)
SHIFTR(CODE, 0)
SHIFTR(MASK, 3)

1B'0101010101';

3B'77';
C I Result
X 1B'1010100000'
X
X 3B'77'
X 18'0000101010'

B 10

B &6
B 10

SECTION 9

SIZE FUNCTIONS

Cerieran e T T~

SIZE FUNCTIONS

The size functions return the logical size of the argument.
The functions are:

) BITSIZE (size-argument } returns number of bits
° BYTESIZE (size-argument) returns number of bytes
. WORDSIZE (size-argument) returns number of words

All partially filled bytes and words are included in the values
returned by BYTESIZE and WORDSIZE respectively.

The value returned by BITSIZE is defined for each of the data
types that can be used as a size-argument.

The result of the BITSIZE function depends on the type of the
argument.

Argument Type Result
Un n (n = integer size)
Sn n+1
Fp Number of bits actually occupied (this includes
sign, exponent, and mantissa bits)
A scale, scale + fraction + 1
Fraction
Bn n
Cn n*BITSINBYTE
P BITSINPOINTER
STATUS Status-size if specified; otherwise, minimum

number of bits necessary to represent status
object of that type

TABLE Number of bits from first bit of first entry to
last bit of last entry

BLOCK Number of words occupied by block * BITSINWORD

1081-1 7:9-1 SOHECH

T "

vy

Examples

Descriptions*
ITEM RANGE S 10;
ITEM POSITION U;

ITEM AZIMUTH F 30;

ITEM VELOCITY F;

ITEM SUBTOTAL A 6,2;

ITEM MASK B 10;
ITEM FLAG B;

ITEM ADDRESS C 26;
ITEM CODE C;

ITEM LETTER STATUS

(V(A), V(B), V(C), V(D),
V(E), V(F), V(G), V(H}:

ITEM SWITCH STATUS
V(ON), V(OFF)):

TABLE ATTENDANCE
(1:10) T s6;
ITEM COUNT U 5

Function Call
BITSIZE (RANGE)
BITSIZE (POSITION)

BITSIZE (AZIMUTH)
BITSIZE (VELOCITY)

BITSIZE (SUBTOTAL)
BITSIZE (MASK)
BITSIZE (FLAG)
BITSIZE (ADDRESS)
BITSIZE (CODE)
BITSIZE (LETTER)

BITSIZE (SWITCH)
BYTESIZE (POSITION)
WORDSIZE (POSITION)

BITSIZE (MASK AND FLAQ)

BITSIZE (ALERT(1))

Result
1
15

actual number
of bits

actuai number
of bits

9

10

1
26*8

1*8

uibiaaiblidiatiionaibissa

1
TABLE CONDITION(20) T; (CONDITION(])) 2
BEGIN (ATTENDANCE(l)) 6

3

ITEM ALERT B; (SPECIFICATIONS) 3*100*16
- ITEM CONTROL B;
- END NOTE: Table ATTENDANCE has tight

TABLE SPECIFICATIONS (99);| structure with 6 bits-per-entry. Table
BEGIN CONDITION has tight structure, the
ITEM LENGTH U 5; default entry-size is 2.

ITEM WIDTH U 9;
ITEM HEIGHT U 5;
END

*Assume BITSINWORD is 16, BITSINBYTE is 8.

JEP——

1081-1 7:9-2

Descriptions* Function Call Result

BLOCK GROUP; BITSIZE (GROUP) 102*16
BEGIN
ITEM COUNT U; NOTE: The block GROUP occupies
ITEM VELOCITY F; 102 words.
TABLE TIMES(99):

ITEM SECONDS U; b
END

*Assume BITSINWORD is 16, BITSINBYTE is 8.

1081-1 7:9-3 SOFlecH

SECTION 10
THE NWDSEN FUNCTION

THE NWDSEN FUNCTION

The NWDSEN function returns the number of words of storage '
allocated to each entry in the table or table-type-name given as its !

argument.
The form is:
NWDSEN (argument)
The type returned is S with default size.

Examples

TYPE DIMENSIONS TABLE; : L

e b - e ek v Soconsatns e W o a e m

BEGIN
ITEM LENGTH U;

ITEM HEIGHT U;
ITEM WIDTH U;
END
TABLE COMPONENTS (10, 5) DIMENSIONS;
NWDSEN (DIMENSIONS) returns 3
NWDSEN (COMPONENTS) returns 3
TABLE COMPONENTS (10, 5) DIMENSIONS = 11 * 6 * NWDSEN
(DIMENSIONS) (0);

SECTION 11
STATUS INVERSE FUNCTION

it aamn

liihindis _ - " g . " L " . . B ,
ks g " . & . ——— o i s R i g i DR cnrdesipesn P w e

.!’?1

THE STATUS INVERSE FUNCTION

The status inverse functions find the lowest and highest values of
the status-list associated with their argument.

The status inverse function that finds the lowest value has the

form:
FIRST (argument)
The status inverse function that find the highest value has the
form: _
LAST (argument)
The type of the result is the same as the type of the argument.
Examples ‘

Given the following declarations:
ITEM LETTER STATUS
{V(A),V(B),V(C).V(D),V(E),V(F),V(G),V(H));
ITEM SWITCH STATUS
(V(ON},V(OFF));

The following functions have the following results:

! Function Call Function Value
FIRST(LETTER) V(A)
LAST(LETTER) V(H)
FIRST(SWITCH) V(ON)

1081-1 7:11-1/7:11-2 SOF’.ECH

o e B L T St . BRIV

STATUS INVERSE FUNCTIONS -- EXERCISES

Given the following declarations:

TYPE SEASON STATUS (14V(SPRING), 7V(SUMMER), V(FALL),
3V(WINTER));

TYPE COLOR STATUS (V(RED),V(ORANGE),V(YELLOW),
V(GREEN),V(BLUE),V(VIOLET);

Give the values of the following function calls:

Function Call Result

FIRST(SEASON)

LAST(SEASON)

FIRST (COLOR)

¥ 1081-1 7:11-3 5°"-'rECH

- " - T B SR - st AL S AR Il DAL 00 £ IO (ot A Tl i

ANSWERS

Given the following declarations:

TYPE SEASON STATUS (14V(SPRING), 7V(SUMMER), V(FALL),
3V(WINTER));

TYPE COLOR STATUS(V(RED),V(ORANGE),V(YELLOW),
V(GREEN),V(BLUE),V(VIOLET);

Give the values of the following function calls:

3 Function Call Result .
FIRST (SEASON) V(WINTER)
LAST(SEASON) V(SPRING)
FIRST(COLOR) V(RED)
1081-1 7:11-4

P ‘
e g e e ———- epa
e R —— Flewh e 32

SECTION 12

THE NEXT FUNCTION

SOFfecH

!

AD=AL08 527

UNCLASSIFIED
5.5

SOFTECH 1 WALTHAM M
.IOV!AL W Iom(uoox- VOLUME 1. INTESER AND FLOATING Poxut-nctu)_

uov 81 I3 osoz-n—c-oono
RADC=TRe81-333=YOL=1

............l : |

R 1

o
:

-

—— t a2 ||2.2

L = =

&

< 2s s s
. = = ==

MICROCOPY RESOLUTION TEST "CHART
NATIONAL BUREAU OF STANDARDS-1963-A

G

LR B e L o o
. P

THE NEXT FUNCTION

The NEXT function may obtain a successor or predecessor of a

status argument. The form is:

NEXT (argument, increment)

The NEXT function returns a status value.

NOTES: Increment is an integer formula. If increment is
positive, NEXT returns a successor. If increment is
negative, NEXT returns a predecessor. Increment may
not select a value outside the range of the status-list.
The status-list must have default representation.
Argument may not be an ambiguous status-constant,

Example

TYPE SHAPE STATUS (V(A), V(B), V(C), (V(D), V(E), V(F);

1081-1

ITEM JJ SHAPE;

FOR JJ : FIRST (SHAPE) THEN NEXT (JJ, 1) WHILE JJ < LAST

(SHAPE) ;

7:12-1 SOFlecr4

B M

* S "
N Rt e A 1 6t D e 1A A e it . s, on o s

P

THE NEXT FUNCTION -- POINTER

The NEXT function may obtain the arithmetic sum of a pointer
argument and an increment. The form is:

NEXT (argument, increment)

The NEXT function returns a pointer.

NOTES: Increment is an integer formula. The value

returned is:
pointer-formula + increment * LOCSINWORD

The programmer must take care that when using NEXT
with a pointer argument, the pointer points to a
programmer defined object.

1081-1 7:12-2

THE NEXT FUNCTION -- EXERCISES

Given the following declarations:
TYPE SEASON STATUS (V(SPRING), V(SUMMER),V(FALL),
V(WINTER);
ITEM CLIMATE SEASON = V(SUMMER);
TYPE CITATION
TABLE (1000);
BEGIN
ITEM NAME C 20;
ITEM TITLE C 50;
ITEM DATE C 6;
END
TABLE MATHEMATICS CITATION;
ITEM CITATION'PTR P CITATION = LOC(MATHEMATICS);

Assuming that the data objectives have their initialized values and
that LOC(MATHEMATICS) is 25600, give the results of the following
function calls:

NEXT(CLIMATE, 0)

- Function Call Result
#" NEXT(CLIMATE, 1)

= NEXT(CLIMATE,-1)

&

? .

NEXT(CITATION'PTR, 2)

e e el

V(WINTER);

TYPE CITATION

Mt CaRie ooy

TABLE (1000);
BEGIN

END

Assuming that the data objectives have their initialized values and
that LOC(MATHEMATICS) is 25600, give the results of the following

E ’ function calls:
Function Call
NEXT(CLIMATE, 1)
; NEXT(CLIMATE,-1)
A NEXT(CLIMATE, 0)
V NEXT(CITATION'PTR, 2)

1081-~1

e

ITEM CLIMATE SEASON =

ITEM NAME C 20
ITEM TITLE C 50: i
ITEM DATE C 6; '

TABLE MATHEMATICS CITATION;
ITEM CITATION'PTR P CITATION = LOC(MATHEMATICS);

ANSWERS

Given the following declarations:

TYPE SEASON STATUS (V(SPRING), V(SUMMER),V(FALL),

V(SUMMER) ;

Result

V(FALL)

V(SPRING)

V(SUMMER)

25600 + 2 * LOCSINWORD

7:12-4

SECTION 13
THE BOUNDS FUNCTION |
|

THE BOUNDS FUNCTION

The bounds functions find the lower or upper bound of a table

dimension.
The function to find the lower-bound has the form:
LBOUND(argument, dimension-number) !
The function to find the upper-bound has the form: |
UBOUND(argument , dimension-number)

Argument may be a table-name or a table-type-name. The type
returned is either integer or status depending on the type of the

dimension.

NOTES: Dimension-number is an integer formula known at
compile-time. Dimensions are numbered left to right

starting with zero. For parameters declared with asterisk 1
bounds, LBOUND always returns 0.

Examples

1) TABLE TABNAME(1:5, 2:17, 8, 1:7);

LBOUND (TABNAME, 1) returns 2
' UBOUND (TABNAME, 3) returns 7 T
LBOUND (TABNAME, 2) returns 0

2) FOR 1:LBOUND(TABNAME,0) BY 1 WHILE | <= UBOUND(TABNAME,0);

FOR J:LBOUND(TABNAME, 1) BY 1 WHILE J <= UBOUND
(TABNAME, 1) ;

FOR K:0 BY 1 WHILE K <= UBOUND(TABNAME, 2);

FOR L;LBOUND(TABNAME, 3) BY 1 WHILE L <=
UBOUND(TABNAME, 3);

TABENT(I,J,K,L) =0;

1081-1 7:131 SOFlecH

Bl e SRS 0

3)

1081-1

" PROC CLEAR (: TABNAME):

BEGIN
TABLE TABNAME (*, *);
ITEM NUMBER S;
FOR | : 0 BY 1 WHILE | <= UBOUND (TABNAME, 0);

FOR J : 0 BY 1 WHILE J <= UBOUND (TABNAME, 1);

NUMBER (1, J) = 0;
END

NOTES: Asterisk LBOUNDS always are zeros.

7:13-2

SECTION 14
SUMMARY OF BUILT-IN FUNCTIONS

SOFlecH

SUMMARY OF BUILT-IN FUNCTIONS

LOC (argument)
The LOC function obtains the machine address of its argument.

ABS (numeric-formula)
The ABS function returns the absolute value of the numberic-

formula.

]

SGN (numeric-formula)
The sign function returns an indication of the sign of the

numberic argument.

BIT (bit-formula, first-bit, length)
The BIT function selects a substring from a bit-formula.

BYTE (character-formula, first-character, length)
The BYTE function selects a substring from a character formula.

REP (name)
The REP function obtains the machine representation of a data
object.

SHIFTR (bit-formula, shift-count)
SHIFTL (bit-formula, shift-count)
1 The shift right and shift left functions perform a logical shift on
- a bit string.
BITSIZE (size-argument)
BYTESIZE (size-argument)
WORDSIZE (size-argument)
The BITSIZE, BYTESIZE and WORDSIZE functions return the
! logical size of a data argument in full bits, bytes, and words.

NWDSEN (argument)
The NWDSEN function returns the number of words in an

1 entry in a table.

1081-1 7141 SOFlecH

I——"

IR R T S rtr BB B 14 e SRR BRI il st iz B Do rdie ¢ e e

FIRST (argument)
LAST (argument)
The FIRST and LAST functions return the status-constant with

the smallest and largest representation in a given status-argument.

NEXT (argument)
The NEXT function returns the successor or predecessor of'its
status argument, or the incremented machine address of its
pointer argument,

UBOUND (argument, dimension-number)

LBOUND (argument, dimension-number)
The U-BOUND and L-BOUND functions return the upper and
lower bounds of a given table for given dimensions.

1081-1 7:14-2

SUMMARY OF BUILT-IN FUNCTIONS -- EXERCISE

TYPE COLOR STATUS (V(BROWN), V(BLUE), V(GREEN), V(GREY));
TYPE PERSONNEL
TABLE (1:40);

BEGIN
ITEM HEIGHT A 10, 4;
ITEM WEIGHT F 20; ;
ITEM EYES COLOR; |
ITEM HAIR COLOR; |
ITEM FIRSTNAME C 15;

ITEM LASTNAME C 25;
ITEM MARRIED B;
END
ITEM PERSPTR P PERSONNEL;
TABLE PERSON PERSONNEL;
ITEM PINX U = 3;
¥ ITEM $BIT1 B 16 = 2B'1';
’ ITEM $BIT2 B 16 = 4B'1';
ITEM $CHAR C 12 = 'GANG BUSTER!';
Assume the following implementation parameters:
- BITSINBYTE 8
BYTSINWORD 32

BYTESINWORD)

] 1%

Using the declarations and assumptions given on the previous page, give

values returned by the following built-in functions.

Function
1.

2.

BYTESIZE($CHAR)
LOC(PERSON)
BYTE($CHAR, 6, 2)

(assuming HAIR-V(BLUE))
NEXT(HAIR, 2)

SHIFTR($BIT2,12)
UBOUND(PERSON, 0)
LBOUND (PERSON, 0)
BITSIZE(HEIGHT (PINX))
BIT($B1T1,15,1)
BYTE($CHAR, 0, 4)
BITSIZE(EYES(8))

NEXT (LAST(EYES(8)),-2)
SGN (LBOUND(PERSON, 0))
SHIFTL($BIT2,2)

NWDSEN (PERSON)
WORDSIZE($CHAR)
BITSIZE(PERSON)

1081-1 7:14-4

Value

ANSWERS

Function

1.

2.

10.
11.
12.
13.
14.
15.
16.
17.

1081~

BYTESIZE($CHAR)
LOC(PERSON)
BYTE($CHAR,6,2)

(assuming HAIR-V(BLUE))
NEXT(HAIR, 2)

SHIFTR($BI1T2,12)
UBOUND(PERSON, 0)
LBOUND(PERSON, 0)
BITSIZE(HEIGHT(PINX))
BIT($BIT1,15,1)
BYTE($CHAR,O0,4)
BITSIZE(EYES(8))
NEXT(LAST(EYES(8)),-2)
SGN (LBOUND(PERSON, 0))
SHIFTL($B1T2,2)

NWDSEN (PERSON)
WORDSIZE($CHAR)
BITSIZE(PERSON)

1

Bk At L 3 A AR s «

Value

12

Pointer of type PERSONNEL containing

address of PERSON,
IUS]

V(GREY)

1B'0000000000000000'
40

1

15
1B'0000000000000001'
'GANG !

2

V(BLUE)

+1
1B'0000000000000100'
16

3

16*32*40

7:14-5

SOFlecH

o . A - g

e Ar et g e

N . o o T - - Lo R s R T e R R T e e mrpaie s e T

?;i
BLOCK-PRESETS
Blocks may be preset. If a block-preset is given on a block declared
using a block type-name, it must be given as part of the block-heading.
Otherwise, it is given as part of the block-body.
Examples
a. BLOCK GETDATA;
BEGIN
ITEM NAME C 20 = 'J. JONES';
TABLE REPORT (1 : 4) = V(GOOD), 'B';
BEGIN
ITEM ATTITUDE STATUS (V(POOR), V(AVE), ‘
V(GOOD)):
ITEM GRADE C 1;
| END
" END
b. Using the TYPE BLOCK GROUP, as declared on the previous
page, the following block-declaration with a block preset can
be made:
. BLOCK MAPPINGS GROUP = 3, (20 (3.2, ~3.2)), ('XXX,
- (12 (6))):
1081-1 4:3-5/4:3-6 swreal'

DECLARATIONS -- EXERCISES

Write JOVIAL (J73) declarations for the following:

1.

2‘

10.

é 1081-1

A counter to be used to count each day of the course
as it passes.

A variable to reference a person's monthly income tax
deductions, This variable must always be accurate to

two decimal places.

A type that may contain your full name.

A type that may take an integer values from -20 through 20.
A variable to be used to indicate an emotional state.

A variable to keep track of every time a subroutine is called.
A group of items to describe the information one must

give when captured. (Use the type declared for #3 where
appropriate.)

A group of items to describe a checker board. The black
squares (treat as every other square) should be preset

to -16. (Use the type declared for #4 where appropriate.)
A collection of the names of students in this class and the
number of students. (Use the type declared for #4 where
appropriate.)

A collection of information on your paycheck stub. This

may include a group of deductions, a group of kinds of
pay, name, amount, etc.

4i3-7 SOFlecH

TRy
.

8.

ANSWERS

ITEM COUNT U;
ITEM DEDUCT A 20, 7;
TYPE FULL'NAME C 50;
TYPE VALUE S 5;
ITEM EMOT STATUS (V(HAPPY), V(SAD)):
ITEM COUNTER U;
TABLE CAPTURED;
BEGIN
ITEM NAME FULL'NAME;
ITEM RANK C 9;
ITEM SERIAL'NO C 9;
END
TABLE CHECKERS (1 :32);
BEGIN
ITEM BLACK VALUE = 32(-16);
ITEM WHITE VALUE:
END
BLOCK CLASS;
BEGIN
ITEM NUMBER VALUE;
TABLE NAMES (1 : 30);
ITEM PERSON C 20;

TABLE CHEX (1 :8, 1: 8);

ITEM SQUARE S =
ll(‘l(-16):
(4(, -16));

10. BLOCK PAYCHECK;

BEGIN

ITEM NAME C 20;

ITEM SSN C 9;

TABLE DEDUCTIONS;
BEGIN
ITEM FICA A 20, 7;
ITEM FED'INC A 20, 7;
ITEM STATE'INC A 20, 7;
END

END

1081-1 h:3-9

iii‘ ﬁi s wk Lizons Ak ill 'i]“.}’_"‘. L b~ e P s e

SECTION 4
SUMMARY

B o> DD P i ot o N D

TABLE-DECLARATIONS

A table declares a group of objects. The form of a table-declara-

tion is:
[CONSTANT] TABLE name [table-attributes] ;
entry-description

or

TABLE name [table-attributes] item-type-description

[table~-preset] ;

Entry-description may either by simple:

item-declaration
or compound:

BEGIN

item-declaration, ..

END
Table-attriputes shown so far are:

[dimension-list] [table-type-name } [table-preset]
Dimension-list is of the form:

(dimension, ...)
Dimension is of the form:

[lower-bound :] upper-bound

NOTES: A dimension-list may have as many as seven

the default lower-bound is:

- zero if upper-bound is of type S or U.

the first status-constant if upper-bound is of
type STATUS.

dimensions. Lower-bound and upper bound must both be
of type S, U, or STATUS. Lower-bound must be less than
or equal to upper-bound. If lower-bound is not specified,

4:4-1

TABLE TYPE-DECLARATIONS

A table-type-name may be declared to describe a table type.
A simple form of a table type-declaration is:
TYPE table-type-name TABLE ;
entry-description
A table-type-name may then be used in a table-declaration:

TABLE name table-type-name [table-preset] :;

NOTES: A type-declaration does not declare any data;
table~presets may not appear. Presets may only appear on
the heading of the table-declaration.

A table-declaration using a table-type-name must not have

an entry-description.

LIKE OPTIONS

A table type-declaration may include a like-option:
TYPE table-type-name TABLE like-option;
entry-description
A like-option is of the form:

LIKE table-type-name

NOTES: A like-option allows the program to create a
variety of tables with a common front part.

A like-option s used only in a table type-declaration.
A like-option must not be used in a table-declaration.

DIMENSIONS

A table type-declaration may include a dimension list:
TYPE table-type-name TABLE dimension-list ;
A more complete form of a table type-declaration is:
TYPE table-type-name TABLE [dimension-list | [like-option] ;

entry-description

;

NOTES: A table-type declaration may have one and only one
dimension-list. If the like-option refers to a dimensioned
table type, the type-declaration itse!f may not have a
dimension-list. If the type-description has a dimension-list,
a table being declared with that tabre-type-name must not

also have a dimension-list.

CONSTANT TABLE-LDECLARATIONS

A table may be declared to be a constant table. The form is:

CONSTANT TABLE name [table-attributes] ;

NOTES: Not all items in all entries of a constant table

need to be preset.

The table-preset may be given as a part of the table-
attributes or as a part of the entry-description,

TABLE PRESETS

A table-preset initializes items within an entry of a table. A table-
preset may be given as a part of the entry-description or as a part of the
table-attributes. The form is:

= value, ...

1081-1 4:4-3 SOFlacH

ing item in an entry will not be preset.
the list, (by placing commas next to each other), or at the end of the

Values may be omitted in a table-preset to indicate the correspond-

list, (by use of a semi-colon to end the declaration),

A value or a group of values may be repeated. The form is:
repetition (preset-option, ...)

A preset-option has the form:

value
repetition (preset-option, ...)}

A positioner may be used to select a specific entry to preset.

The form is:

POS (index-list) : wvalue, ...
Index-list has the form:

index, ...

Values may be omitted within

NOTES: The indices used in a positioner must agree in
number and in type with the dimensions. The values of
the indices must lie within the ranges prescribed by the
dimensions.

TYPE EQUIVALENCE, IMPLICIT CONVERSION

same number of elements in each dimension, same number of items in each

Two tables are equivalent if they have the same number of dimensions,

entry, and the type and order of the items are the same.

1081-1

No implicit conversions are performed.

4:4-4

P

Example
TABLEONE (1:10, 2:5, 2:3); TYPE SWITCH STATUS (V(ON), V(OFF));

BEGIN TABLE TWO (81 : 90, 3, V(ON) : V(OFF);
ITEM AA U; BEGIN
ITEM BB F; ITEM CC U;
END ITEM DD F;
END

Tables ONE and TWO are EQUIVALENT: they both have three
dimensions; they both have ten entries in the first dimension, four entries
in the second dimension, and two entries in the third dimension; each 1
entry has two items; and the first item is of type U and the second is

of type F.

EXPLICIT CONVERSION

Lkt) o Laae

A bit string may be converted to the value of a table type if the
size of the bit string is equal to the BITSIZE of the table type.

A table-conversion may be applied to a table object of that type
merely to clarify (for the reader) the type of that object. it may not
change the type of the table.

e e

Example
TYPE XX TABLE;

E T

ITEM XX1 U;
TABLE YY XX; §
cee (% XX %) (YY) ... :

8 1081-1 4:4-5 5°'=|'ECH

BLOCK DECLARATIONS

A block is a collection of items, tables, and nested blocks. A
block declaration has the form:

BLOCK name;
block-body
A block body is:

table-declaration

{ item-declaration
block-declaration

t4

A block type-declaration declares a block-type-name'ihat may be

used in a block-declaration. The form is:
TYPE block-type-name BLOCK
block-body
The block type-name may then be used in a block-declaration:
BLOCK name block-type-name [block-preset];

Blocks may be preset. If a block-preset is given on a block
declared using a block type-name, it must be given as part of the block-
heading. Otherwise, it is given as part of the block-body.

MISSION
of
Rome Air Development Center

RADC plans and executes neseanch, development, test and
selected acquisition programs in suppont of Command, Control
Communications and Intelligence (C37) activities, Technical
and engineering suppont within-atgas 0f technical competence '
48 provided to ESD Program Offices (POs) and othen ESD ¥
elements. The principal technical mission areas are b
communications, electromagnetic guidance and contrnof, sun- 0,
veillance of ground and aerospace obfects, intelligence data
collection and handling, information system technology,
Lonospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility.

:
3
3

CAF I I 9L 9L 9L 9 9L 1F 9L 1B I AF 90 ¥ S LA HLAKY

